

GEMstudio Pro

User's guide
2020

Table of Contents
Welcome ...5
Project Types ...6
GEMstudio IDE Features ...7

Create LCD Configuration ..7
Removing Touchpanel Calibration ..9

LCD/Board Chooser ...10
Board Profile Editor ...12
Href Editor ...13
Page Functions Editor ..18
External Code Editors ..25

Enable External Code Editor ..26
Amulet GEM Font Converter ...29
Colors ...39
Using Amulet Formatted Text ...40
Numbers ..42
Image Formats ...42
Programming the Amulet OS ..43
Localization ..44

Marking Strings for Translation ..45
Context ...46
Guidelines For Marking Strings ...46
Translating Dynamic Strings ..48

Extracting Strings to be Translated ..49
The Translator's Job ...50
Compile .PO to .MO ..54
Using .MO files ...54
Poedit ..56

Exporting Portable Projects ...56
Local Configurations ..58
Incremental Compile ...61
Project Properties ..63

LCD ..63
Bezel Image ...65

Communication ..67
InternalRAM ..68
Color Depth ..70
Transitions ...71
Language ...71
Logos ...72
Miscellaneous ...74
GEMscript ...76
USB MSD ..78

GEMstudio API ..78
Amulet Function Calls ...79

Function Call Conventions ..79
Control Widget Function Calls ...80

Multiple Function Calls ..81
Sequenced Function Calls ..81
Using Backslashes, Commas and Semi-colons within Strings stored in Function Calls82

View Widget Function Calls ...82
Page Functions ...82
Amulet Internal RAM ...83

Internal RAM nomenclature ...84

Using InternalRAM variables as method arguments ...84
Using InternalRAM byte variables as variable indices ...85
Using InternalRAM string variable for a button label ..85
Initializing Internal RAM variables at compile time ...86

Initializing single Internal RAM variables ..86
Initializing multiple Internal RAM variables ..87
Initializing special attributes in Internal RAM string variables ...88
Reloading the initialized InternalRAM variables on a per page basis89

Internal RAM specific methods ..89
InternalRAM Byte Method Descriptions ..89
InternalRAM Word Method Descriptions ...90
InternalRAM Color Method Descriptions ...91
InternalRAM String Method Descriptions ..92
Miscellaneous InternalRAM Method Descriptions ...93

Setting the number of available variables ...94
Amulet Widgets ...95

Object ...95
Image ...95
Animated Image ...96
Static Text ..97

Control Widgets ..98
CheckBox ...98
CustomButton ..100
CustomSlider ..102
FunctionButton ...104
ImageScroller ...106
List ..109
PWM (deprecated) ...111
RadioButton ...112
Scribble (deprecated) ..113
Slider ..115
Timer ..117
Touch Area ...118

View Widgets ..122
BarGraph ..122
Dynamic Image (deprecated) ..123
ImageBar ..124
ImageSequence ...125
Line Graph ...127
Line Plot ...128
Linear Gauge ...130
Numeric Field ...131
Rectangle ...134
String Field ...135

Intrinsic Values ...138
Backlight Control ...139
Inter-Widget Communication ..139
META Refresh Objects ...148
Nested Pages ...152

Amulet Communication Protocols ..152
Communication Format ...153
Communication Modifications ..154
CRC Protocol ..156

Amulet as Master ...156
Amulet as Slave ..157
CRC Commands ..157

Using Extended Addressing ..162
RPC Buffer ..162
Graphic Primitives Usage ...163

Graphic Primitives ..166
Error Responses ..168
CRC Calculation ..169
Jump to specific page ..169
Soft Reset ..170
Get Current Page Index ..170
Flow Diagram Example ...170
Summary of Amulet CRC protocol ...172

ASCII Protocol ..173
Amulet as Master ...173
Amulet as Slave ..174
ASCII Commands ..174

Using Extended Addressing ..178
Graphic Primitives Usage ...179

Graphic Primitives ..181
RPC buffer ..185
Software handshaking using a modified XON/XOFF protocol ...185
Jump to specific page ..185
Soft Reset ..186
Flow Diagram Example ...186
Summary of Amulet ASCII protocol ...188

UTF-8 ..189
Dual Master Collisions ...190
Sending Master Messages Between Amulet Page Changes ...191
Font Style Escape ...191
Sending A Single Byte Without A Response ...191
Sending A Stream Of Bytes Without A Response ...191
Sending A String Of Bytes Without A Response ...192
Customizing the Amulet protocol command opcodes ..192

Serial Terminal ..193
Amulet Bitmap Format ...193

Standard Module ...193
High Performance Module ..194

Link Map ...194
Macro Preprocessor ..196
Utilization of SD Card ...198

Data Logging ..198
Software Programming ..198

Appendix A - UART Code examples ...199
Appendix B - All Commands ...210

Control Widget Href Functions ...210
Control Widget IWC Methods ...217
View Widget Href Functions ...222
Widget-specific Href Functions ...224

Line Graph Widget Href Functions ..224
StringField Widget Href Functions ...224

Appendix C - Inter-Widget Commands ..225
Animated Image Methods ...225
BarGraph Methods ..226

CheckBox Methods ..227
Custom Button Methods ...228
Custom Slider Methods ...230
Dynamic Image (deprecated) ..231
FunctionButton Methods ..231
Image Methods ..232
ImageBar Methods ..233
ImageScroller Methods ..234
ImageSequence Methods ..235
Line Graph Methods ..236
Line Plot Methods ...237
Linear Gauge Methods ..238
List Methods ..239
META Refresh Tag (deprecated) ..240
Numeric Field Methods ...241
Pulse Width Modulation (deprecated) ..242
Radio Button Methods ..242
Rectangle Methods ..244
Scribble (deprecated) ..244
Slider Methods ..245
Static Text Methods ...246
String Field Methods ...247
Timer Methods ..248
Touch Area Methods ...249

Restore Amulet OS ...249
GEMstudio Production Files ...250

Pass Thru Programming ...251
Palm Database Format ..252
XModem Protocol ..253

Video Tutorials ..256
Change Log ...256

Welcome

Congratulations on your Amulet purchase! Please take a few minutes to read this file which contains the latest
information about setting up and using your Amulet product. This documentation is valid for GEMstudio Pro software
version 3.6.3.B Build 3

Overview

The Amulet method of displaying graphics on an LCD is totally different from traditional methods. The Amulet GEM
Graphical OS Chip handles all the LCD and touchpanel functions so your microcontroller doesn't have to. Hardware
wise, the only requirement is that your microcontroller needs a UART or USB in order to use the Amulet system. On the
software side, you need to create an Amulet serial protocol handler. Generally, the only thing that is being sent via the
serial link is data.

Here's the Amulet system in a nutshell.

1. GUI authoring tool called GEMstudio Pro is used to create a Graphical User Interface(GUI).
2. GEMstudio Pro is used to compile your GUI to a small binary file which is then downloaded into the Amulet module.
3. The Amulet module displays the GUI and handles all touchpanel interaction.
4. The Amulet module receives input data from your host microcontroller via the serial link and also sends command
messages back to your microcontroller based upon timer-based or touchpanel events.

There are two types of variables in the Amulet system. External variables (byte, word, color and string) which reside
on your microcontroller's side and InternalRAM variables (byte, word, color and string) which reside on the Amulet
module. InternalRAM is a quasi-dual port RAM that can be read from and written to by the Amulet chip through
commands inserted in the GEMstudio Pro code. Your microcontroller interfaces to InternalRAM through the serial link.
There are specific UART and USB commands that can read from and write to InternalRAM.

There are four major types of serial messages that will be sent between the Amulet module and your microcontroller.

1. A request of a variable (byte, word, color or string)
2. A setting of a variable (byte, word, color or string)
3. A Remote Procedure Call, which is a completely generic message which allows the Amulet module to inform your
microcontroller of a certain event. You can have up to 256 unique RPC's. What those RPC's signify is entirely up to you.
4. A raw byte, or group of bytes, can be sent from the Amulet module to your microcontroller. This option is not part of
the Amulet serial protocol, but rather it gives you the flexibility to have the Amulet module send you small commands
that do not need to be answered. In addition, a scripting language gives access to the serial receive byte interrupt and a
custom handler can be written to define your own serial protocol.

Please see the Amulet UART Protocol documentation for more details.

Your LCD's user interface is created using GEMstudio Pro. Amulet has created a number of I/O objects, referred to as
Amulet Widgets. There are two types of Amulet Widgets, Control Widgets and View Widgets. Control Widgets are
input objects, like function buttons, sliders, radio buttons, etc... Control Widgets have a function, or a set of functions,
that can be applied to them. For instance, a function button can be set to send a Remote Procedure Call #5 out the
UART or USB every time it is pressed. View Widgets are output objects, like bargraphs, numeric fields, string fields,
etc... View Widgets call a function which returns the data used as the input for that particular widget. For instance, a
bargraph can have a function which requests external byte variable #3 every 100ms over the UART or USB. When the
Host microcontroller replies to that message, the bargraph automatically redraws itself with the new value.

The complexity of the serial protocol handler depends upon the type of communication you will be using in your
system. You can set up your project so that the Amulet module is the master, requesting data at given update rates and
sending command messages asynchronously. Or your microcontroller can be the master, sending data to the Amulet
module unsolicited. And you can also use a dual master setup, where the Amulet module is sending asynchronous
command messages to your microcontroller, yet your microcontroller is also sending unsolicited data to the Amulet.

Project Types

There are two formats in which GEMstudio can save projects. There is the "Version Control Project" format and the "Non
Version Control Project". By default, all projects start as a Version Control Project, or VCP for short, but this can be changed
by selecting the "Non Version Control Project" in the File -> Save As menu.

Both formats save the master project file with a ".gemp" file extension. If you open an older project you will be asked to
convert to the newer VCP format or keep the old format, which is the NonVCP format.

The NonVCP format is a single file which includes all pages and the XML is not formatted for readability. This means
any change will modify the whole project and it will be difficult to merge when more than 1 developer is working on the

project. However, the NonVCP format is useful for providing examples or sharing ideas with just a single file, without having
to zip up the whole project directory.

The VCP format is designed with version control tools in mind. Each page of the GUI is exported to its own source code
file so that multiple people can more easily work on different pages at the same time. Additionally, the XML output has
a "Pretty" formatting that makes it convenient for running through a merge tool in the case that multiple developers do
modify the same file. When saving in VCP format there are some extra folders that get created. In the same directory as
your .gemp file is an additional folder with a similar name as your .gemp file, only preceded by a period. This is referred to
as the "dot" folder:

Inside the "dot" folder are two or three folders:

 or

If you have compiled the project there will be an output folder, but if you have never compiled the project or have recently
used the "Clean" Option in the Project menu then there will be no output files. If your hardware supports incremental
compilation, the output folder will contain intermediate objects files as well as the final output.

The json folder contains information that external code editors can use to help with code completion and other coding
tasks.

The pages folder is where the XML and GEMscript code for each page of your project exists. There are "page" files with
the .gpf extension that include widget definitions and page-specific properties. There are also "script" files with the .gsf
extension that contain the GEMscript for each page. Breaking the data for a whole page into two files allows for easy
editing of the page functions with external editors.

GEMstudio IDE Features

Overview

There are many several different dialog boxes accessible through the various menus and other types of popups. This
section will give an overview of each dialog box and how they are used.

Create LCD Configuration

If there is no matching LCD selection available, the user can customize their own LCD settings and save as a specific LCD
profile.
On the main window of GEMstudio, click on the button:

A new window will pop up for user to enter their customizations.

The LCD Profile Editor window enables user to select the manufacturer, width and height, part number and color depth
of the LCD display. This is also where initialization files can be specified. The pixel clock, horizontal sync, and vertical
sync settings can all be configured based on the requirements of the specific display.

Removing Touchpanel Calibration

The default mode of resistive touchpanel configurations is to boot to a touchpanel calibration upon first boot/reinstallation
of OS. This is done for multiple reasons:

1) The touchpanel configuration file is overwritten when programming Amulet OS.
2) Changes in the unit's environment (temperature, humidity) can affect resistive touch performance.

If desired, it is possible to remove touchpanel calibration from the process and hard code the calibration constants into the
OS. To remove calibration, the first step is to determine your hard coded calibration constants. To do this, first set up a test
page with the following HREF in a functionButton:

InternalRAM.word(z).calArraySet()

This sets the calibration constants into successive Internal RAM word variables, starting with z.
InternalRAM.word(z)= mx128
InternalRAM.word(z+1) = bx
InternalRAM.word(z+2) = my128
InternalRAM.word(z+3) = by

The calibration constants can be read by four Numeric Field widgets on the same test page that displays these four Internal
RAM word variables. They can then be entered into a touch panel configuration file. In Windows Vista or later, these
calibration files are located at:

C:\ProgramData\AmuletTech\Global\Configuration\TouchPanel

If "tpCalibration=0x00" and the four constants added to a touch panel configuration file, touch panel calibration will not be
required upon loading a new OS.

The four variables are referenced in the touch panel configuration file as:
tpMx128=
tpBx=
tpMy128=
tpBy=

See STK-CY-043.ini touch panel configuration file in ProgramData/AmuletTech/Global/Configuration/TouchPanel for an
example of a configuration that skips calibration. After saving these values into your Touchpanel Calibration file and, if you
saved with a new file name, making sure that your LCD configuration is using that calibration file, GEMstudio will detect
the change in your setup and automatically recompile the OS. The next time you program any project, it will not require
calibration.

Note that these can still be changed at runtime by calling the calibrate() command or by resetting/booting with the
touchpanel calibration signal (TPCAL) switched to High.

LCD/Board Chooser

The LCD/Board Choice can be selected a few different ways. When starting a new project, the easiest method to is
select a premade LCD/Board profile from the new project wizard.

If you have custom hardware, then you may press the "I dont have a Starter Kit" button and you may select specific LCD
and board configurations from the Project Properties dialog.

The project properties is also available from the Project menu at any time. While editing a project, there is a quick way
to change the display by pressing the "LCD:" button circled here in red

Board Profile Editor

Board Profile Editor enables the user to customize the components and board programming on the user's board. The
editor has two sections: supported components and miscellaneous. To name the board, click "Save" at the bottom of
the window.

Components

• Amulet Chip:AGB75LC04-BG-E: 225-pin BGA packaged GEM Graphical OS Chip
• AGB75LC04-BG-E: 206-pin QFP packaged GEM Graphical OS Chip
• Flash:AT45DB08: 8 MBit Atmel Flash
• AT45DB16: 16 MBit Atmel Flash
• AT45DB32: 32 MBit Atmel Flash
• AT45DB64: 64 MBit Atmel Flash
• SDRAM:IS42S32200E: 64 MBit ISSI SDRAM
• IS42S32800D: 256 MBit ISSI SDRAM
• SPI Init File:AGB75L default: default SPI init file

Miscellaneous

• SPI Port Used for LCD Initialization (if LCD requires SPI Initialization):

1: SPI Slave Select 1
2: SPI Slave Select 2
3: SPI Slave Select 3

• Slow USB Clock While Programming:
False: Select False to use the normal clock for USB programming.
True: Select True if user is having problems programming via USB. The result of this selection is slightly
slower programming speed and the LCD will have a flicker during actual programming. Once the
programming is done, it goes back to full speed.

Href Editor

To add function to the widget, the user can include href functions when modifying the widget. The user just has to click
on the "Value" next to the href property for that particular widget as shown below.

A new Href Editor window will pop up. An example of the Href Editor window is shown below.

To customize the look and feel of the Href Editor, select “options” from the drop down Tools menu on the top of the
Project window.

The user can customize the Editor with the following options:

Syntax Highlighting

1. Keywords: customize the color from a color picker that pops up when you click on the color selection, and font
style (bold, italic and/or underline).
2. Comments: customize the color from a color picker that pops up when you click on the color selection, and font
style (bold, italic and/or underline).
3. Strings: customize the color from a color picker that pops up when you click on the color selection, and font style
(bold, italic and/or underline).
4. Numbers: customize the color from a color picker that pops up when you click on the color selection, and font
style (bold, italic and/or underline).

Other Code Editor Options:

1. Autocomplete Applies Standard Case: CHECKED or UNCHECKED. If CHECKED, then GEMstudio will autocomplete
the METAs using the font case from the GEMstudio libraries. If UNCHECKED, then GEMstudio will autocomplete using
the same case font the user was typing with.
2. Auto Close Brackets: CHECKED or UNCHECKED. If CHECKED, GEMstudio will automatically provide a closing
bracket.
3. Auto Indent New Lines: CHECKED or UNCHECKED. If CHECKED, GEMstudio will automatically indent new lines of
code.
4. Highlight Block When Hovering Mouse Over Gutter: If CHECKED, GEMstudio will highlight a block of code when
the mouse hovers over the gutter as shown in the figure below.

1. Circle Matching Brackets: CHECKED or UNCHECKED. If CHECKED, GEMstudio will circle the matching brackets as
the user closes the bracket.
2. Display Line Numbers: CHECKED or UNCHECKED. If CHECKED, GEMstudio will display line number in a gutter on
the left of the Page Functions Editor.

Href Editor Tips:

1. Auto complete is activated with the TAB key. If the cursor is not at the end of a line, auto complete will not show
visual gray. The user must hit TAB to show the available options. If the cursor is at the end of a line and there are
multiple options available, the user must hit TAB to show options. However, if there is only one option available,
hitting TAB will auto complete the visually grayed function.
2. C style comments (/* … */) are supported as shown in the Figure below. Auto complete is not available inside
comments.

1. The user can fold and unfold blocks of comments (unlike the Page Functions Editor) for easier reading and
navigation. The user can access these commands from the folding drop down menu. Arrows shown in the left gutter
of the editor can also be used to collapse or expand blocks of code. An example is shown below:

For more information on the usage of href editor functions, please go to Inter-Widget Communications and Appendix
C.
NOTE: If at any time, you need further explanation on widget or parameter in your project, select the widget or

parameter and click on the button on the lower left hand corner of the project window or press "F1". A help
window will pop up and explain the selected widget or parameter.

Page Functions Editor

There are 2 ways to open a “Page Functions” window to include META REFRESH functions or to add GEMscript to the
page. First, select “Page Functions” from the Project drop down menu at the top of the project window as shown in the
first figure below. The second method is to select “Edit Page Functions” from a pop up menu that appears when the
user right clicks on the page name as shown in the second figure below.

A new Page Functions window will pop up. An example of the Page Functions window is shown below.

To customize the look and feel of the Page Functions Editor and HREF Editor, select “options” from the drop down Tools
menu on the top of the Page Functions window.

The user can customize Code Editor with the following options:
Syntax Highlighting

1. Keywords: customize the color from a color picker that pops up when you click on the color selection, and font
style (bold, italic and/or underline).
2. Comments: customize the color from a color picker that pops up when you click on the color selection, and font
style (bold, italic and/or underline).
3. Strings: customize the color from a color picker that pops up when you click on the color selection, and font style
(bold, italic and/or underline).
4. Numbers: customize the color from a color picker that pops up when you click on the color selection, and font
style (bold, italic and/or underline).

Other Code Editor Options:

1. Autocomplete Applies Standard Case: CHECKED or UNCHECKED. If CHECKED, then GEMstudio will autocomplete
the METAs using the font case from the GEMstudio libraries. If UNCHECKED, then GEMstudio will autocomplete using
the same font case the user was typing with.
2. Auto Close Brackets: CHECKED or UNCHECKED. If CHECKED, GEMstudio will automatically provide a closing
bracket.
3. Auto Indent New Lines: CHECKED or UNCHECKED. If CHECKED, GEMstudio will automatically indent new lines of
code.
4. Highlight Block When Hovering Mouse Over Gutter: If CHECKED, GEMstudio will highlight a block of code when
the mouse hovers over the gutter as shown in the figure below

1. Circle Matching Brackets: CHECKED or UNCHECKED. If CHECKED, GEMstudio will circle the matching brackets as
the user closes the bracket.
2. Display Line Numbers: CHECKED or UNCHECKED. If CHECKED, GEMstudio will display line number in a gutter on
the left of the Page Functions Editor.

Page Functions Tips:

1. Block navigation is available on the top of the Page Functions Editor window. Click on the up down arrows and a
small window will pop up listing the different blocks of code as shown in the Figure below. Select a block and the
block will be highlighted in the Page Functions Editor.

1. Auto complete is activated with the TAB key. If the cursor is not at the end of a line, auto complete will not show
visual gray. The user must hit TAB to show the available options. If the cursor is at the end of a line and there are
multiple options available, the user must hit TAB to show options. However, if there is only one option available,
hitting TAB will auto complete the visually grayed function.
2. C style commenting (/* … */) and (//) for a single line are supported as shown in the Figure below. Auto complete
is not available inside comments.

1. The user can fold and unfold blocks of code for easier reading and navigation. The user can access these
commands from the Folding drop down menu. Arrows shown in the left gutter of the editor can also be used to
collapse or expand blocks of code. An example is shown below:

For more information on the usage of page functions, please go to Amulet Function Calls and META Refresh Object. For
the available functions, please check Appendix B.

NOTE: If at any time, you need further explanation on widget or parameter in your project, select the widget or

parameter and click on the button on the lower left hand corner of the project window or press "F1". A help
window will pop up and explain the selected widget or parameter.

External Code Editors

The integrated Page Functions Editor is fine for smaller projects, but as the complexity of your project grows you may want
some of the added features of modern, extensible text editors. Amulet has gone one step further than just launching the
editor for you. A language server protocol is available as an extension of the VS Code editor. This makes the editor aware
of GEMscript syntax as well as parsing the project folder to make it aware of the objects and methods available on each
page. It has an intelligent autocomplete with features like parameter hints and integrated help documentation. You get all
the features of a modern code editor like code refactoring and reference search along with numerous customizations and
extensions. It also allows multiple files to be open at once, and will remember which files are left open upon relaunching of
the editor, even Macro definition files and other non-source files.

There are a few steps to enable the external code editor and the Amulet extension for it, so first timers should make sure to
read this topic.

https://microsoft.github.io/language-server-protocol/

Enable External Code Editor
There are a few steps required to enable external code editors. First, the project must be saved as a "Version Control
Project" format or "VCP" for short. For new projects, this is the default. For existing projects, you can choose Save As from
the file menu to convert the project to the VCP format.

Once the project is saved or converted, there will be a new folder in your project with the similar name as the .gemp file,
preceeded with a period. This folder contains three folders. The "json" folder contains files that the external code editor
can parse to learn about the objects and methods that your script may reference. The "output" folder contains exported
data that the external code editors may use to help with autocomplete and other features as well as some precompiled
object data after a compilation has been done. The "pages" folder contains the bulk of a project's data. Each "page" within
GEMstudio is represented by two files: the "GEMstudio Page File" or .gpf, and the "GEMstudio Script File" or .gsf. The
"pageName.gpf" contains all of the widget data for the given page. The "pageName.gsf" file contains all of the GEMscript
and other non-widget code.

The second step is to tell GEMstudio which text editor you would like to use for editing the Page Functions. Currently, there
is only one external text editor, Microsoft VS Code. When this is selected, it will launch VS Code (if not already open with
this project) and select the currently open page when entering the Page Functions editor from the Project menu or the
page's context menu.

This is a global setting and will affect all VCP format projects. Once set, entering the Page Functions through either method
will launch a VS Code "Workspace"

The Workspace includes all of the .gsf script files in the project and opens to the script file for the page currently selected in
GEMstudio. By default, the .gpf page files are filtered, as they are XML files which you can easily corrupt with syntax errors,
so hiding them prevents accidental manipulation. You probably shouldn't manually modify them unless you are familiar
with XML, but there are some tasks that it can make easier.

The GEMstudio installer can attempt to install the GEMscript extension automatically. To make sure the extension is
installed, press the Extensions tab along the left side and make sure Gemscript Language Support is listed there.

If the extension is not installed, you can quickly install it by searching for Amulet in the marketplace. Alternatively, there is a
manual install found by opening the Extensions "..." menu and selecting "Install from VSIX..."

Then navigate to the Extensions directory of your GEMstudio Pro install, which is typically C:\Program Files
(x86)\AmuletTechnologies\GEMstudio Pro\Extensions, and select the .vsix file

Amulet GEM Font Converter

The Amulet GEM Font Converter converts any installed Windows font into an Amulet font file that can be used in any
Amulet project. Fonts can be converted either into a 1-bit bitmap format (.auf) or an 8-bit anti-aliased format (.aauf).
Both types of font files can be used in any GEMstudio project.

Fonts and the Amulet GEM Font Converter

Any font used in a GEMstudio project will need to be converted into an Amulet Unicode Font file (.auf) or Amulet Anti-
Aliased Unicode Font file (.aauf) using the Amulet GEM Font Converter. The subsequent .auf/.aauf file should be placed
in one of three acceptable folders, either the root directory of the project you are compiling, the root\Fonts directory,
or the ProgramData\AmuletTech\Global\Configuration\Fonts folder. GEMstudio gives priority to font files in the project
root directory, then the root\Fonts directory, and finally the ProgramData\AmuletTech\Global\Configuration\Fonts
directory.

If the .auf/.aauf file is placed in the ProgramData\AmuletTech\Global\Configuration\Fonts folder, the font can be used
in any GEMstudio project. If the file is placed in the project root or root\Fonts folder, the font can only be used in a
project saved in that same root directory.

Starting the Amulet GEM Font Converter

The Amulet GEM Font Converter runs on Windows Vista and newer and may be invoked one of the following ways:

• From the main GEMstudio Pro window, click on the button .
• Click on Launch GEM Font Converter from the File menu

Using the Converter

To convert a Windows font into an Amulet Font file(.auf/.aauf), load and save the font with the Amulet GEM Font
Converter.

To load the font, click on the blue "Click here to load font..." from the main window.

Once the pop-up window appears, select the Font, Font style, and Size. Select OK when the correct font has been
chosen.

Once the font is loaded, the main viewing box displays all the glyphs that will be converted into the Amulet font file in
the quality as they will appear on the Amulet display. When first opened, the Amulet GEM Font Converter will convert
the font using a 1-bit bitmap format. To see what the glyphs will look like using an 8-bit anti-aliased format, select the
"anti-alias" Glyph Quality radio button.

Once the anti-alias radio button is selected, the main viewing box will show what the glyphs look like anti-aliased.
NOTE: Some fonts at certain sizes show no visible difference between bitmap and anti-alias. For example, Arial size 13
and smaller look exactly the same whether bitmapped or anti-aliased. In those cases, only the bitmapped fonts should
be used because they will use up less flash space, less RAM, and will render to the display quicker.

By default, the main viewing box shows all converted glyphs spaced out uniformly. To see a specific string using the
true spacing for the glyphs, click the check box located to the left of the edit field that says "Enter text to view sample".
Once checked, the edit field becomes active and anything that is typed in the edit field will show up in the main
viewing box below using the currently selected font. NOTE: If any glyphs are entered into the edit field that are not part
of the converted range, a blank space will show up in the main viewing box.

Depending upon the state of the Glyph Quality radio buttons, the save button will say either "Save .aauf File" or
"Save .auf File". To save the converted font file into an Amulet font file, click on the save button. The font file will be
saved in either the 1-bit bitmap format (.auf) or the 8-bit anti-aliased format (.aauf). It is possible to save the same font
in both formats, but the state of the Glyph Quality radio buttons will determine in which format the font is saved. To
save in both formats, the save button must be selected a second time after changing the Glyph Quality radio button.

By default, the Amulet GEM Font Converter will save the Amulet font file to the global ProgramData\AmuletTech
\Global\Configuration\Fonts folder. The font will then be available to be used in any project within GEMstudio.

To make a project more portable, the font file can be saved directly in a project's root directory (i.e. the same folder
where the .gemp file resides). The project's root directory can be navigated to in the "Save as Amulet Font" window, or
once the font is saved in the ProgramData\AmuletTech\Global\Configuration\Fonts folder, it can then be copied over to
the project's root directory.

The save file name is the font name with _xx appended to the end, where _xx is the corresponding point size. This is
the format that MUST be used for GEMstudio to find and use the font file correctly. The program automatically uses the
appropriate extension based on the Glyph Quality radio button. Do NOT change the extension in hopes of creating a
different quality font file. 1-bit bitmapped font files must have the .auf extension and 8-bit anti-aliased font files must
have the .aauf extension.

Selecting Ranges of Characters to Convert

The Amulet GEM Font Converter has the ability to convert all glyphs from 0x0000 to 0xFFFF. The Glyph Range edit box
determines which glyphs to convert. If the edit box has not been modified, it will start with a default of the lower-ASCII
characters, 0x20-0x7e. To convert and save either more or less than the default, edit the Glyph Range edit box. Ranges
are specified by a - between the first and last character of the range. To specify the range, use either hexadecimal,

decimal, or character format*. For instance, a capital A is 0x41 (or 65 if using decimal) in ASCII format, so entering A or
0x41 or 65 in the Glyph Range edit box will all result in the same capital A being used. The first character should be less
than the last character. Multiple ranges can be selected by comma delimiting them. If a single character is desired, omit
the - and just enter the single number or the character itself.

For example, to only convert the numbers 0 through 9, all the capital letters A through Z, the exclamation point, the
number sign, the ASCII characters for , - and ., and the ñ(alt-164) symbol, the following string can be used in the Glyph
Range edit box: 0-9,A-Z,!,#,0x2c-46,ñ

Notice that the actual characters were used in most of this edit box, but the range of ASCII characters for , - and . used
a hexadecimal number(0x2c) to start the range and a decimal number(46) to end the range. The , and - are the only
ASCII characters that cannot be used within the Glyph Range edit box. As in this example, if the comma or dash is to be
entered in the edit box, use the hexadecimal or decimal representation of those two characters.

*If dealing with glyphs greater than 0xff, use a hexadecimal or decimal representation of the glyph rather than entering
the character itself.

This allows for displaying font characters that are not part of the lower-ASCII range. The characters that can be found in
the upper-ASCII and Unicode section (0x80 and above) are not always going to be the same from font to font, so ensure
the glyph to be displayed is available in the selected font.

This option also allows for saving a smaller subset of a font if it is known that only a portion of a specific font is going
to be used. For instance, if a large number font is to be used in a numeric field widget, it is possible to convert only
the numbers 0 through 9. Being it is a large font, if all the lower ASCII characters were saved, it would result in a very
large .auf/.aauf file which would eat up a large portion of the project's flash space. By selecting a range of 0-9, just the
numbers 0 through 9 would be converted, resulting in a much smaller .auf/.aauf file, thus using much less flash space,
and if the fonts are cached, much less RAM space. If the numeric field widget can display decimal or negative numbers
then the period(.) and minus sign (0x2c) should be added to the Glyph Range.

Selecting Ranges of Characters to Convert with a File

Instead of typing your glyph ranges directly into the Font Converter's Glyph Range edit box, you can specify the location
of a text file containing the glyph range information.

This feature can make it easier to switch between multiple ranges or specify a very long list of ranges.

The Glyph Range edit box value is persistent after closing down the Amulet GEM Font Converter no matter if a group of
ranges or a file is specified.

File Menu
Load Font Loads font for viewing. Brings up a font dialog box for choosing the font.

Same as clicking the blue name of the font from the main window.

Exit Exits the program.

Help Menu
Help Opens this help document.

About Brings up a pop-up window giving the version of the program.

Disclaimer

Converting copyrighted TrueType and bitmap fonts for the purposes of resale, copyright infringement or licensing
avoidance is strictly prohibited. Refer to the original font's licensing agreement for additional restrictions that may
apply. Amulet Technologies will not be held liable for infringements made to a font's licensing agreement, nor will it
take responsibility for the user's actions involving the use of the Amulet GEM Font Converter.

Colors
The color depth used in a project is determined by the Color Depth tab in the Project Properties menu option. The
different color bit depth options are: 8 and 32. If using 8-bit color, a palette must be designated. If not designated, the
AmuletDefault.pal color palette (found in the ProgramData/AmuletTech/Global/Configuration/Palettes directory) will
be used. The AmuletDefault.pal color palette is the Web Safe palette with nine extra colors added. These nine extra
colors correspond with the HTML standard color names that aren't normally found in the Web Safe palette.

When clicking on the color swatch rectangle of a color parameter, a standard color selection dialog appears. This dialog
provides quick and easy access to configure your desired color, although it does not affect the alpha channel:

After selecting a color, the color value is displayed in the #rrggbbaa format within GEMstudio Pro and the alpha channel
(aa) will not be changed. The one exception is the fontColor attribute, which uses the #rrggbb format because it does
not support the alpha channel. By default, the alpha channel starts out at a value of FF, which means fully opaque.
To change the alpha channel, click on the number instead of the color swatch rectangle and the value of any of the
channels can be manually adjusted.

Instead of using the color picker, you can also use one of these methods below to specify a color.

1. Define a macro to represent your color. You can then change the value everywhere in your project with one
central location, and you can define the macro as any of the methods below.

2. Use an InternalRAM Color variable. The full syntax is "InternalRAM.color(x).value()", but you can use the
shorthand "air.c(x).value()".

3. Use one of the 17 HTML standard color names:

#00FFFFFF
Aqua

#000000FF
Black

#0000FFFF
Blue

#FF00FFFF
Fuchsia

#808080FF
Gray

#008000FF
Green

#00FF00FF
Lime

#800000FF
Maroon

#000080FF
Navy

#808000FF
Olive

#FFA500FF
Orange

#800080FF
Purple

#FF0000FF
Red

#C0C0C0FF
Silver

#008080FF
Teal

#FFFFFFFF
White

#FFFF00FF
Yellow

HTML color names, along with the #rrggbbaa convention equivalent.

4. Specify the red, green, blue, and alpha values in hex using the following convention:#rrggbbaa, where rr is the 8-
bit red value, gg is the 8-bit green value, bb is the 8-bit blue value, and aa is the 8-bit alpha (transparency) value.
Each value can be a number from 00 to ff (in hex). The level of transparency is set by the alpha channel. The alpha
channel is fully transparent with a value of 00 and completely opaque (no transparency) with a value of FF.

5. Specify the red, green, and blue values in decimal using the following convention:rgb(rrr,ggg,bbb), where rrr is the
8-bit red value, ggg is the 8-bit green value, and bbb is the 8-bit blue value. Each value can be a number from 0 to
255 (in decimal).

6. Specify the red, green, blue, and alpha values in decimal using the following convention:rgba(rrr,ggg,bbb,a.aa),
where rrr is the 8-bit red value, ggg is the 8-bit green value, bbb is the 8-bit blue value, and a.a is the decimal value
of alpha transparency. The color values can be a number from 0 to 255 (in decimal). The alpha value can range from
0.00 to 1.00. 0.00 is fully transparent and 1.00 is fully opaque(no transparency). 0.50 would be half transparency

7. Use an absolute hex number to specify an absolute index into an 8-bit color palette. This number should not be
used to specify a 32-bit color! If you want to use decimal, precede with a 0, such as 0128.

Using Amulet Formatted Text

Amulet Formatted Text lets you change font attributes in the middle of a text string. The font attributes that can be
modified are the font name and font size, the color of the font, and the four different style attributes of bold, italic,
strikethrough and underline. The basic syntax used for the Amulet Formatted Text starts with a backslash followed by
a control character and terminated with an underbar. Following the control character are modifiers that are specific
to the control character. The Amulet Formatted Text can be used on any string used within the Amulet GEMstudio
Pro system, including on strings sent via the UART and strings defined in GEMscript.

Style Attributes
The four style attribute modifiers all have a consistent syntax. To turn on a style attribute, use the backslash followed
by the control character and terminated by the underbar. (i.e. to start using bold text, use: \b_) To turn off a style
attribute, use the backslash followed by the control character and the number 0 and terminated by the underbar.
(i.e. to stop using bold text, use: \b0_) Once a style attribute modifier is encountered in a string, all text to the right
of the modifier takes on that attribute until either the end of the string or until the opposite style attribute modifier
is encountered.

Style Attribute Syntax

bold on \b_

bold off \b0_

italic on \i_

italic off \i0_

strikethrough on \s_

strikethrough off \s0_

underline on \u_

underline off \u0_

Font Attributes

Changing the color, size, or the font itself uses a similar syntax to the style attributes, but with different modifiers
following the control character. Font changes require that the Amulet Font file exists in the project's font menu. The
name and size of the font must match the name used in the project's font menu, including the three special font
modifiers of (local), (anti-aliased), and (anti-aliased local).

Font Attribute Syntax Notes

font change \f{name, xxpt}_ where name is the name of the font and xx is the point size of the font

color change \crrggbb_ where rr is the hex value of red, gg is the hex value of green, and bb is the hex value of blue

color change (8-bit) \cxx_ where xx is the index into the current color palette using a hex number

color change (InternalRAM color) \Cxx_ where xx is the index into the InternalRAM.color(xx) variable using a hex number

Examples:

1) In a static text that is set to use Bitstream Vera Sans, 12pt in black and the text attribute contains the following:
Test string that \f{Existence Light, 18pt}_changes the font\f{Bitstream Vera Sans, 12pt}_ and the \cff0000_color
\c000000_ and adds an \u_underlined\u0_ word.

2) In a function button with its font set to Bitstream Vera Sans, 18pt (anti-aliased) that has the following in its label
attribute:
E\f{Bitstream Vera Sans, 12pt (anti-aliased)}_ASY \f{Bitstream Vera Sans, 18pt (anti-aliased)}_B\f{Bitstream Vera
Sans, 12pt (anti-aliased)}_UTTON

3) This example shows how you can use the font change modifier as a dynamic string to adjust the size of a font in a
stringField widget using a lone checkBox and a GEMscript function.
In a stringField that has an href of InternalRAM.string(0) and the following in its printf:
%.50sThis string can change size!

A lone checkBox called cbFontSize that can be checked or unchecked and calls GEMscript.setFontSize() in its href,
and the following in GEMscript:

public setFontSize()
{
 if (document.cbFontSize.value() == 0) {
 InternalRAM.string(0) = "\f{Bitstream Vera Sans, 12pt (anti-aliased)}_";
 }
 else {
 InternalRAM.string(0) = "\f{Bitstream Vera Sans, 18pt (anti-aliased)}_";
 }
}

This is the stringField with the checkBox unchecked:

This is the stringField with the checkBox checked

Note: In order to use the font change modifier you must have the Cache Fonts option enabled in the Project
Properties dialog, Misc tab. This is on by default for new projects, but may be set to off for opened projects.

Numbers

Integers can be entered in hexadecimal or decimal. Decimal examples are used in this document. If hexadecimal is
desired, precede the number with 0x. For example:

uart1.invokeRPC(10)

is equivalent to

uart1.invokeRPC(0x0A)

Image Formats

With the exception of the Animated Image, which only accepts the animated .GIF file format, all other images used by
image objects or widgets can use any of these options:

GIF

This is the most compact format to store images in the Amulet system. Images can only contain 256 colors, and one of
these (per image) may optionally be assigned as the transparency color and will not be drawn. Because of this color
loss, this is typically not suitable for photographic images. Also, the transparency is 1-bit, i.e. either full-on or full-off,
which does not give you the rounded edges look of high quality graphics.

PNG

This is the workhorse format of most Amulet projects due to the lossless compression, full color quality, and 256 levels
of transparency for nice rounded edges. The files usually are larger than .GIF format, but they are much easier/quicker
to decompress than .JPEG

JPEG

This is a compact but lossy file format which is best used for photographs. It does not support any kind of transparency.

Alternatively, .BMP .TIFF, and .PICT formats can be used, but these are not native formats to the Amulet OS, so
GEMstudio will automatically convert them to PNGs for you.

Programming the Amulet OS
The files stored in the onboard embedded flash are comprised of a mix of project related files and generic OS files.
When programming a completely blank embedded flash, both the project and OS files will be programmed in. But,
when programming a project into an embedded flash that already has the proper OS files, only the project files will be
programmed in.

When the Program Project button is hit, the OS files in the embedded flash are tested to see if they match the settings
specified in the project. If so, the project will be programmed in.

But, if the OS files do not match the settings specified in the project, the following pop-up window is displayed:

Pressing No will close the pop-up window and will close the Program Flash window. Pressing Yes will program in both the
new OS files as well as the project files. This enforces that the OS files always match the project files.

In modules that appear as a Mass Storage Device on your computer, the OS files can be tested whether the module is
in Run Mode or Program Mode. But, in the standard module, the OS files can only be tested when the module is in Run
Mode and currently running a project. If the Program Project button is hit while a standard module is in Program Mode, the
following pop-up window is displayed:

Pressing No will close the pop-up window and will close the Program Flash window. Pressing Yes will program in both the
new OS files as well as the project files. This enforces that the OS files always match the project files.

If it is ever desired to manually force the OS to be programmed in, check the Include OS Files checkbox prior to hitting the
Program Project button in the Program Flash window.

This will program both the OS files and project files together.

Localization

GEMstudio provides an easy interface to help your project to become translated into other languages. In general, the GNU
gettext method is used. This is broken up into several steps and the examples rely on a third party translator's tool called
Poedit.

Note: In order to use localization you must have the Cache Fonts option enabled in the Project Properties dialog, Misc tab.
This is on by default for new projects, but may be set to off for opened projects.

Marking Strings for Translation

The first step in translation is marking which strings in the project need to be translated. The marked strings get extracted
from the source code into a format that is friendly with translator's tools, such as Poedit. GEMstudio automatically marks
labels in FunctionButtons, CustomButtons, RadioButtons and Checkboxes, the options strings in the List and StringField
widgets, the static text in the printf of NumericField and StringField widgets, and of course the text of Static Text widgets.
To mark strings in non-automatic locations, you can simply take the source string to be translated and wrapping it with a
gettext function:

gettext("Source String")

There are several other areas which you may or may not want to mark strings:

1) Setting a string type using the IWCs InternalRAM.string(x).setValue("String") or
document.setValue("String")

Dynamic strings such as those in InternalRAM string variables or Intrinsic values of other StringField objects can be marked
for translation by inserting the method "gettext("String")" right into the setValue function:

InternalRAM.String(x).setValue(gettext("String"))
document.widgetName.setValue(gettext("String"))

This does double duty as it marks the string for translation so that the string extractor tool will detect it, and this will also
tell the Amulet OS to translate the string at runtime into the currently selected language.

2) Setting a string type using GEMscript

There are two times when you may want to mark a string in GEMscript. There is the method similar to the one above, in
which you want to set a String to a value directly such as:

InternalRAM.string(x) = "String"
document.widgetName.stringValue = "String"

The "String" can be wrapped with gettext:

InternalRAM.string(x) = gettext("String")
document.widgetName.stringValue = gettext("String")

This will send the "String" to the OS for translation, pull it back into GEMscript, then send it out to the OS again to set the
variable or widget value. This is not very efficient as several copies of the String are allocated. Another option is to just mark
the string for translation, but don't actually do the translation in GEMscript, using the _noop version of gettext:

InternalRAM.string(x) = gettext_noop("String")
document.widgetName.stringValue = gettext_noop("String")

This will not translate the string at runtime (in GEMscript) as there are other ways to translate the dynamic string when
displaying the string.

3) Dynamic Strings

You may want to translate strings retrieved from your host processor which are not part of the normal GEMstudio project,
for example in a StringField HREF of UART.string(0).getext(), but you don't know how to mark them for translation. To
accomplish this you can wrap your string with gettext, and then comment it out:

//gettext_noop("String From Host")

The extractor tool will walk through all code including comments and find all of these strings.

Context

If multiple strings are found to be exactly the same, they will not generate a new entry to be translated. Sometimes
one word in English can have two different meanings, which are different words in another language. When only using
gettext both will have a single source string and a single translation. For example, "Open" might mean open a file, or
open a door, which are different phrases in some languages. To get around this, we use a "context" identifier to distinguish
the two strings. We have implemented a "context" parameter in many widgets and the "pgettext" version of gettext
supports a second context parameter. The "p" stands for "particular" to indicate you are looking for a particular translation.
The format is:

pgettext("context String", "Source String")

This can be used in the same places as gettext to mark strings.

1) Setting a string type using the IWCs InternalRAM.string(x).setValue("String") or
document.setValue("String")

InternalRAM.String(x).setValue(pgettext("menu","File"))
document.widgetName.setValue(pgettext("non-menu","File"))

2) Setting a string type using GEMscript

InternalRAM.string(x) = pgettext("menu","Tools")
document.widgetName.stringValue = pgettext("non-menu","Tools")

Guidelines For Marking Strings

Before strings can be marked for translations, they sometimes need to be adjusted. Usually preparing a string for
translation is done right before marking it. The GNU gettext specification recommends several steps in order to ensure
that the translator understands the intent of the original message. The GNU spec can be found here but the pertinent
sections are listed below. In some cases the code examples are not valid code in GEMstudio, but the example illustrates the
point. What you have to keep in mind while doing the marking is the following.

Decent English style.

Translatable strings should be in good English style. If slang language with abbreviations and shortcuts is used, often
translators will not understand the message and will produce very inappropriate translations.

"%s: is parameter\n"

https://www.gnu.org/software/gettext/manual/gettext.html#Preparing-Strings

This is nearly untranslatable: Is the displayed item a parameter or the parameter?

"No match"

The ambiguity in this message makes it unintelligible: Is the program attempting to set something on fire? Does it mean
"The given object does not match the template"? Does it mean "The template does not fit for any of the objects"?

In both cases, adding more words to the message will help both the translator and the English speaking user.

Entire Sentences

Translatable strings should be entire sentences. It is often not possible to translate single verbs or adjectives in a
substitutable way.

printf ("File is %s protected", rw ? "write" : "read");

Most translators will not look at the source and will thus only see the string "File is %s protected", which is unintelligible.
Change this to

printf (rw ? "File is write protected" : "File is read protected");

This way the translator will not only understand the message, she will also be able to find the appropriate grammatical
construction. A French translator for example translates "write protected" like "protected against writing".

Entire sentences are also important because in many languages, the declination of some word in a sentence depends on
the gender or the number (singular/plural) of another part of the sentence. There are usually more interdependencies
between words than in English. The consequence is that asking a translator to translate two half-sentences and then
combining these two half-sentences through dumb string concatenation will not work, for many languages, even though it
would work for English. That’s why translators need to handle entire sentences.

Split at Paragraphs

Often sentences don’t fit into a single line. If a sentence is output using two subsequent printf statements, like this

printf ("Locale charset \"%s\" is different from\n", lcharset);
printf ("input file charset \"%s\".\n", fcharset);

the translator would have to translate two half sentences, but nothing in the POT file would tell her that the two half
sentences belong together. It is necessary to merge the two printf statements so that the translator can handle the entire
sentence at once and decide at which place to insert a line break in the translation (if at all):

printf ("Locale charset \"%s\" is different from\n\
input file charset \"%s\".\n", lcharset, fcharset);

You may now ask: how about two or more adjacent sentences? Like in this case:

puts ("Apollo 13 scenario: Stack overflow handling failed.");
puts ("On the next stack overflow we will crash!!!");

Should these two statements merged into a single one? I would recommend to merge them if the two sentences are
related to each other, because then it makes it easier for the translator to understand and translate both. On the other
hand, if one of the two messages is a stereotypic one, occurring in other places as well, you will do a favor to the translator
by not merging the two. (Identical messages occurring in several places are combined by the extracting tool, so the
translator has to handle them once only.)

Translatable strings should be limited to one paragraph; don’t let a single message be longer than ten lines. The reason
is that when the translatable string changes, the translator is faced with the task of updating the entire translated string.
Maybe only a single word will have changed in the English string, but the translator doesn’t see that (with the current
translation tools), therefore she has to proofread the entire message.

Avoid string concatenation.

Hardcoded string concatenation is sometimes used to construct English strings:

strcpy (s, "Replace ");
strcat (s, object1);
strcat (s, " with ");
strcat (s, object2);
strcat (s, "?");

In order to present to the translator only entire sentences, and also because in some languages the translator might want
to swap the order of object1 and object2, it is necessary to change this to use a format string:

sprintf (s, "Replace %s with %s?", object1, object2);

Avoid unusual markup and unusual control characters.

Unusual markup or control characters should not be used in translatable strings. Translators will likely not understand the
particular meaning of the markup or control characters.

For example, if you have a convention that ‘|’ delimits the left-hand and right-hand part of some GUI elements, translators
will often not understand it without specific comments. It might be better to have the translator translate the left-hand and
right-hand part separately.

Translating Dynamic Strings

By default, the dynamic string area (%s) of the StringField is not automatically translated. The source of the dynamic strings
could already be translated, so the programmer must decide based upon the source.

Pre-translated Strings:

When the string is already translated (either coming pre-translated from the Host processor or manually Translated in
GEMscript) then the href of the StringField should use the .value() method. For example:

InternalRAM.string(x).value()
document.widgetName.value()
UART.string(x).value()

Untranslated Strings:

When the string needs to be translated, then the href of the StringField should use the .gettext() method. For example:

InternalRAM.string(x).gettext()
document.widgetName.gettext()
UART.string(x).gettext()

Context in Dynamic Strings:

Even if a Dynamic String has a context, the gettext method is still used in the StringField instead of pgettext. The dynamic
string must have the context embedded into the source string in a specific format. That format is:

"Context" + 0x04 + "Source String" + 0x00

There is no null termination after the Context string, then Context and Source String are separated with a single \4, the EOT
character, then the Null terminated Source String. In ASCII Hex, the above string would look like this:
 C o n t e x t S o u r c e S t r i n g
0x43 6F 6E 74 65 78 74 04 53 6F 75 72 63 65 20 53 74 72 69 6E 67 00

When you set a string with gettext when you Mark Strings for translation, the runtime code will always set the string in the
proper language. So the concatenation method described here would typically only be used for strings arriving from an
outside source, such as the serial port.

Extracting Strings to be Translated

Once all the strings that need to be translated have been marked, then they can be quickly extracted to generate a Portable
Object Template, or .POT file. This is a human-readable format which translator tools such as Poedit can open in order to
create translations for specific languages.

To generate the .POT file, Navigate to the Tools menu in GEMstudio and select "Generate POT File..."

This will bring up a Dialog box to choose the save location. By default the location is a "languages" sub-directory under your
last opened project's directory, and it will create this directory if it doesn't already exist.

The resultant .pot file is what you would send to the translator of each language.

Format of the .POT

Upon examining the .POT file in a text editor, you will find that each string is composed of 1 or more comments starting
with a '#' and exactly 2 or 3 lines of code. The output for a Widget named MyFuncButton_1 on a page named Page_1
 with the label of "Open" would look like this:

#: label parameter for Widget MyFuncButton_1 in Page_1
msgid "Open"
msgstr ""

Where:

#: is an automatically generated comment that tells us where this string came from.
msgid is the string to be translated
msgstr is the translated string

Message Context

When the extracting tool sees that a context exists, it will generate an additional line of code. In the example below, two
buttons with the same label in English can handle different strings in another language.

#: label parameter for Widget MyFuncButton_1 in Page_1
msgctxt "File"
msgid "Open"
msgstr ""

#: label parameter for Widget MyFuncButton_2 in Page_1
msgctxt "Door"
msgid "Open"
msgstr ""

As a side note, the msgid is actually appended to the msgctxt string when generating the language database, and these
strings are searched with a binary search, so try to avoid excessively long context strings as this may slow performance in
certain circumstances.

The Translator's Job

Unless you as the programmer are bilingual, it is usually not the programmers responsibility to translate the strings in a
project to a new language. If you are that bilingual programmer, or your translator is not familiar with the Poedit tool, this
will walk through the required steps. Assuming you have followed the previous steps, you should now have a .POT file.
As an example, we will look at the LocalizeDemo.gemp project that comes with GEMstudio in your folder: Documents/
GEMstudio Pro/Amulet Examples/Localization, and it looks like this in GEMstudio:

There are several strings to translate, including one marked in GEMscript which writes an untranslated string to a string
variable, which is then read by both StringField widgets. For demonstration purposes, one of those StringField widgets will
translate at runtime using the gettext() method, and the other will not translate.

Generating a POT file from this project gives the following, which is ready to import into Poedit:
#: label parameter for Widget ChangeToEnglish in Page_1
msgid "English"
msgstr ""

#: label parameter for Widget ChangeToNotEnglish in Page_1
msgid "Not English"
msgstr ""

#: printf parameter for Widget TranslatedTestString in Page_1
msgid "Translated: %s"
msgstr ""

#: printf parameter for Widget UnTranslatedTestString in Page_1
msgid "Untranslated: %s"
msgstr ""

#: text parameter for Widget StaticTitle in Page_1
msgid "\"Hello World\"\nLocalization Demo"
msgstr ""

#: Line 3 in the Page Functions for Page_1
msgid "Hello World"
msgstr ""

Poedit
When you first open Poedit you get a splash screen with several options. The first time here for each project, choose
the "Create new translation". If you've already started the translation and are adding new strings to to it, Pick "Edit a
translation" and then select the "Update from POT File..." option in the Catalog menu.

After navigating to and opening the file from the LocalizeDemo project, if it is your first time here you will be prompted to
pick a language for the translation. I'm just choosing the first item in the current list, Afrikaans. By no means do I know any
Afrikaans, so this translation will be an utter sham, but through it I hope to show the process.

All of the Strings in the .POT file have been imported into a .PO file and now we can start translating. We can see all of
the strings, and by clicking on any line under the source text we can even get a suggestion from Poedit (limited use in free
version)

Using Poedit's suggested translations or Google's translate feature I come up with the "quick and dirty" translations for
each string. Note: If a string does not have a translation, or if the string searched for is not in the file at all, then it will just
use the English version.

By Hitting the Save button, it defaults to the location of the imported POT file, and the Language code and optional Country
Code of the selected language. In this case, just "af.po" for Afrikaans. You don't want to change the name of the file, as this
is a standardized format, and we will be using the name of this file back in GEMstudio.

Saving the .po file from Poedit also, by default, compiled the "af.po" file into its compiled version, "af.mo". These .mo files
are the files that GEMstudio uses. The .mo files should be saved into the same folder as the .pot file, under the languages
folder of your project's root directory. Once there, they will become available as resources in your GEMstudio project.

Compile .PO to .MO

A translator might be more comfortable giving you a PO file instead of a pre-compiled MO. One reason is that the PO can
have translator comments, which can be questions for the programmer to clarify the meaning. These comments are all lost
in a compiled MO. Another reason is they may not be familiar with Poedit and more comfortable just editing the PO file
manually. In any case, the programmer might have to compile the MO themselves, but this is a very simple process with
Poedit

The first step is to open the PO file in Poedit. Open Poedit and Select "Edit a translation"

Next, hit the Save button to compile to the same source directory as the PO. Alternatively, Select the "Compile to MO..."
option from the File menu to choose the save location manually.

If the PO file was already in the right spot (languages folder of GEMstudio project root), then you're done. If not, just copy
it to the right spot, though its probably a good idea to keep all of your translation files in one spot (like the languages sub-
folder of your GEMstudio project!)

Using .MO files

Once you have one or more .mo files in the languages sub-folder of your project directory, you can set the default language,
change the language at runtime, or save the changed language setting to flash so that the next boot will default to that
language.

Change or Remove the Default Language

To set the default language of your project, select Project Properties from the Tools menu, then navigate to the Language
Tab

Select Browse to navigate to and open one of your .mo files to use that as the default language. Select Remove to start with
the language the GUI was designed in (not necessarily English)

Changing the language at Runtime

When you want to change the language at runtime, you can use a simple command:

language.set(filename.mo)

Where:
filename.mo is the name of the .mo file that contains the desired language translation.
The format of filename is standardized. It contains a 2 or 3 character language code in lowercase and a 2 character
optional country code in uppercase. If the country code exists, they are separated by an underbar. For example:

Filipino - fil.mo
Canadian French - fr_CA.mo

Usage:
In the HREF Editor window of any control widget, or in GEMscript, you can use autocomplete feature by Tabbing to select,
or manually type:

 language.set(

Then hitting Tab one more time will give a list of all of the filenames of .mo files that exist in the proper directory. Using
only the "Afrikaans" language file from the previous pages of this help, you would see this:

The af represents the Afrikaans language file and none means use no .mo file at all. After selecting "af" you are prompted
to tab one more time to complete the filename and the rest of the statement with .mo)

Set Current Language as Default

It is often convenient to have the user interface boot up to the local language without intervention. This is easily
accomplished by saving a change to the current language selection to flash. This is done with the command:

language.saveToFlash()

Poedit

This Help uses the Poedit tool written by Václav Slavík to demonstrate the role of the translator in the localization process.

Poedit is a free translation file editor that is available from https://poedit.net/

There is a Pro version, but the examples and screenshots provided here are all from the free version.

Exporting Portable Projects

GEMstudio Projects may contain references to files anywhere on a local or remote drive, not always an easy file path
relative to the .gemp project file. Additionally, GEMstudio installs certain "global" files into each computer's root:/
ProgramData/AmuletTech folder and sometimes designers may want to change some of those files. This makes sharing
your project with a version control system such as git more difficult. It often takes a few iterations of compiling the received
project and asking for the missing files until the recipient finally has all the files. Exporting your project is a simple process
which gathers all of the files referenced in your project and copies them to a destination folder that you specify. Exporting
also converts the project to use Local Configurations instead of any files from the global folder.

To export a project, you must first open a project or save the current unsaved project. Then you can select "Export Portable
Project..." from the Tools menu:

You will then be prompted to select the output folder. This can be anywhere except the same directory as the open .gemp
file.

https://poedit.net/

Once the directory is selected, a message will appear to start the export:

Moments later, depending on the size of the project, another message box will confirm the action is complete and ask
which version you want to keep open:

The exported project will contain several files and folders:

1) If the project is saved as a "version control project" then there will also be a "dot" sub-folder that includes all of the page
and script files for each page of the project with a folder name of ".Projectname" (This would be ".480x272Demo" in the
above example)
2) The AmuletTech folder contains all of the OS and hardware configuration files needed to compile the project.
3) The Fonts folder contains all fonts referenced in the project, which have been converted to be "local" fonts within the
project.

4) The images folder contains all of the images referenced by the project, regardless of how they were previously organized.
5) The include folder contains all of the non-image files specified in the project, such as the InternalRAM initialization,
Macro definitions, and palette file.
6) The .gemp project file
7) The ReadMe describes how to import the OS and hardware configuration files.

Local Configurations

A "Local Configuration" is a copy of the hardware configuration files (Chip, Flash, SDRAM, SPI, UART, LCD, Touchpanel, etc)
and the AmuletOS configurations files (Boot logo, OS pages like error screens, AmuletOS binaries, etc) which are local to
your project. An exported project will automatically have the "Use Local Configuration" box checked in the LCD/Board
Chooser or Project Properties. This tells the compiler to use this local copy of the hardware and OS configuration files
found in the AmuletTech folder inside the export directory. The "Use Local Configurations" setting is only available if an
"AmuletTech" folder exists in the same directory as the .gemp file, like this example of an exported project:

How do I get a local configuration without using an exported project?

The easiest way is to export the project to a different directory and then copy the AmuletTech folder to your project in the
same directory as the .gemp like in the picture above. Once GEMstudio detects the AmuletTech folder it will enable the
"Use Local Configurations" checkbox in the LCD/Board Chooser dialog or the Project Properties under the LCD Tab, and
then you can check the box to enable it.

How do I know if a project is using local configurations?
You can tell that a project is set to use local configurations in several places when the LCD Part Number and Board Name
end with the string "(local)":

1) The Current LCD Selection:

2) The LCD/Board Chooser:

3) The Project Properties:

4) And finally, the Program Flash dialog when you press the Program button:

What is NOT controlled by the checkbox?

The Fonts used by the project are automatically converted to local when performing an export:

This "(local)" means the font specified here resides inside the "Fonts" subfolder of the Project. Unchecking the "Use Local
Configurations" box will not change any font.

Incremental Compile

Incremental compilation is a feature which speeds up compile times by utilizing intermediate precompiled object files
to prevent recompiling the entire project every compile. For most changes, if you are only working on one page, then
only that page will be recompiled. This can reduce compile time by 80% or more, especially when making small, iterative
changes.

For incremental compile to work, your GEMstudio project must be setup to use High Performance hardware, as the file
system on legacy hardware prevents utilizing this feature. The project must also be saved as a Version Control Project.

Once a compatible project is compiled, the "dot" folder (project name preceeded by a period, i.e. ".480x272Demo") will
have an output folder that contains a few folders and a few types of files.

1) The Amulet_msd folder is a copy of exactly what gets placed in the Mass Storage Device of the Amulet hardware when
that hardware is programmed. It is also used by GEM Player to simulate the project in Windows.

2) The amx folder contains the precompiled GEMscript files for each page that contains script.

3) The .link file is the master list of all possible pages, fonts, and images that can be referred to.

4) The .o files are raw binary compiles of individual leaf pages in GEMstudio.

5) The .d files list the offsets within the .o files of link-dependant information.

When incremental compiles happen, if the .link file changes, then all .d files are looked at and are used to change the
specific locations within the .o files that potentially changed because of the change in the .link file.

Notes on incremental compile usage:

* Keep in mind that the .o/.d files are only of the pages, not the other assets. So, because all the assets are compiled in the
preCache page, these other asset files are actually saved to the .projectName/output/Amulet_msd/project folder, similar to
when the OS files are saved to the .projectName/output/Amulet_msd/os folder. But these files are only saved if the .link file
is different than the previous .link file. So, that means the OS and most of the asset files are not updated if there's a small
change in a single page that doesn't result in a change in the .link file. The most common problem this can cause is you
image files not updating in the hardware/simulator even though new versions show up in GEMstudio's layout preview. This
happens when you overwrite your image files with new versions that use identical file names. In this case, a full recompile
is needed and can be easily forced through the Clean or Rebuild Project foun in the Project menu.

* One issue with the incremental compile is that the .map file is created only upon a full compile. Incremental compiles
result in a separate .map file called projectName.partial_compile.map which only has the page(s) that were actually
compiled the last time. If you need a full .map file then you can do a "Clean", found under the Project menu, which will
force a full recompile

Project Properties

There are several tabs in the Project Properties dialog. This section will go over each one.

LCD

LCD Size Selection

This lists the different pixel dimensions available in the LCD Configurations folder.
The default folder location is located at:
C:\ProgramData\AmuletTech\Global\Configuration\LCD
but if Local Configurations are enabled they may also be located relative to the project file:
Project_Root\AmuletTech\Global\Configuration\LCD

LCD Manufacturer Selection

This lists the different manufacturers available in the LCD Configurations folder.
The default folder location is located at:
C:\ProgramData\AmuletTech\Global\Configuration\LCD
but if Local Configurations are enabled they may also be located relative to the project file:
Project_Root\AmuletTech\Global\Configuration\LCD

LCD Part Number Selection

This lists the different manufacturers available in the LCD Configurations folder.
The default folder location is located at:
C:\ProgramData\AmuletTech\Global\Configuration\LCD
but if Local Configurations are enabled they may also be located relative to the project file:
Project_Root\AmuletTech\Global\Configuration\LCD

Remove Bezel Image

Removes the Bezel Image from the project

Select Bezel Image

Opens a File Dialog to Select a new Bezel Image for the project

LCD Rotation Selection

Sets the initial software rotation of the GUI. This will decrease performance due to extra buffers and the physical
rotation of content.
A selection of 0 enables the rotation so that it may later be rotated to 180 degrees, so if no rotation is desired then
set it to "No" to get the best performance.

Board Selection

The Board file specifies the Amulet Chip used and the Flash and SDRAM configurations for the hardware as well as
the initialization files for all of the SPI and UART ports.

Use Local Configurations checkbox

If a Local Configuration is present, then this checkbox will be available to tell GEMstudio to look in this project's
AmuletTech directory for LCD and Board configuration files, among other things.

Cancel button

Close Dialog without saving changes.

OK button

Close Dialog and save changes.

Bezel Image

When a Bezel Image is added to the Project Properties LCD Tab then 4 new options appear to configure the position of the
bezel:

The Top, Left, Bottom, and Right are the coordinates within the Bezel image that correspond to the corners of the
LCD. These coordinates are before rotation, so the orientation of the Bezel image should match the native, unrotated
orientation of the LCD. The Bezel image is typically much larger than the actual display resolution and GEMstudio will scale
it proportionally. The example used here is a 1321x648 "phone" image that will be used around a 480x272 display. This is
that source image:

The Top, Left, Bottom, and Right coordinates were found by measuring the inner, white rectangle. For a seamless look in
GEMstudio, the background color of the image is set to 0x808080. Noting that this example has a 270 degree rotation,
once the project properties are saved then GEMstudio shows the updated Bezel in the layout Preview and the PC simulator,
GEMplayer, also utilizes the Bezel in the simulation. A special feature here is that the regions beyond the display in the
GEMplayer are actually touchable if touchable widgets such as a TouchArea exist in this area. This gives the ability to
simulate a touchpanel that is bigger than the display so that soft-buttons outside of the display's viewble area can be
integrated into the GEMstudio project. The support for extended touchpanels is possible with custom hardware. Contact
sales@amulettechnologies.com for more info on custom hardware.

Communication

CRC Protocol Amulet ID

In the CRC Protocol, this is the value of the first byte of a message sent to, or the reply coming from, the Amulet
hardware. The value can be from 1 to 254 and cannot be the same as the Host ID.

Protocol Type

This determines the communication protocol used between the Amulet chip and the host processor.
ASCII is the legacy protocol that uses non-ASCII opcodes and ASCII data.
CRC is the default protocol that uses a derivative of Modbus RTU with Amulet's specific opcodes as opposed to the
standard Modbus opcodes.

CRC Protocol Host ID

In the CRC Protocol, this is the value of the first byte of a message sent from, or reply to, the Amulet hardware.
The value can be from 1 to 254 and cannot be the same as the Host ID.

ASCII Protocol Slave Response Type

Determines the Amulet's response upon receiving a master command from the host processor where a response is
not required, such as setting an InternalRAM variable. This does not affect master commands where a response is
clearly required, such as requesting the value of an InternalRAM variable.
"No Response" results in the Amulet not responding to any master command that does not require a response
message.
"ACK Only" results in the Amulet responding with a single ACK in response to any master command that does not
require a response message.
"Full Protocol" results in the Amulet responding with the documented response according to the Amulet Serial
Protocol.
Only applicable when using Amulet's ASCII protocol, not the CRC protocol.

Timeout

Determines the amount of time the Amulet will give the host processor to respond to one of its requests. If a time
out occurs, the Amulet will resend its previous request.

Protocol Addressing

Enable this checkbox to extend all InternalRAM get or set messages sent over the USB or UART with an extra
address byte in order to address more than 256 different words, bytes, colors, or string variables. This is
independent of the number of InternalRAM variables available for each type.

Null Termination

All messages sent by the Amulet that contain strings are null terminated. Setting "Null Terminate All Msgs" to
Yes results in all messages sent by the Amulet to be null terminated, whether they contain strings or not. Only
applicable when using Amulet's ASCII protocol, not the CRC protocol.

Inter-Message Delay

Strick implementations of the Modbus protocol requires a 3.5 character delay between messages. If your Host
MCU requires this delay, the Amulet OS may be sending messages too quickly after receiving a response in the
case where multiple messages are queued in the transmit buffer. This setting will turn on a non-blocking delay that
will prevent messages from going out until at least 3.5 characters after the last complete message was received.
Per the standard, this delay is hard coded to 1.75ms for any baud rate above 19200.

Uart Baud Rate

Sets the communication baud rate between the Amulet Color Chip and the host processor for this project. The
number of ports available here depends on the type of hardware selected.

InternalRAM

InternalRAM Bytes

The number of 8-bit InternalRAM Bytes available to use in the Amulet OS by widgets, code, or through the
communication protocol.

InternalRAM Words

The number of 16-bit InternalRAM Words available to use in the Amulet OS by widgets, code, or through the
communication protocol.

InternalRAM Colors

The number of 32-bit InternalRAM Colors available to use in the Amulet OS by widgets, code, or through the
communication protocol.

InternalRAM Strings

The number of Null Terminated InternalRAM Strings available to use in the Amulet OS by widgets, code, or
through the communication protocol.

InternalRAM String Length

The reserved length for each InternalRAM String available to use in the Amulet OS by widgets, code, or through
the communication protocol. Defaults to 26. If an InternalRAM string is set to a value longer than this length, it will
run into the next string variable. This is functionally fine but may render the overwritten adjacent string useless.

Current InternalRAM
Initialization File

The name of the file being used to Initialize InternalRAM variables at compile time. Defaults to None.

Select Initialization File

Launches a File Selector dialog to select a new InternalRAM initialization file.

Remove Initialization File

Removes the current InternalRAM initialization file.

Color Depth

Color Depth

Determines the number of color bits per pixel. Choices are 8-bit or 32-bit.
8-bit results in a much smaller frame buffer and quicker transitions, but only 256 different colors.
32-bit results in a much larger frame buffer and slower transitions, but allows for as close to full color as the chosen LCD
can handle. 8 bits are allocated for each of the three pixels colors, Red, Green and Blue, plus 8 bits are reserved for an
alpha channel allowing for 256 degrees of transparency.

Palette File (8-bit color only)

Determines the 256 color palette to use if the Color Depth is set for 8-bit.
Defaults to Amulet's Web Safe palette if not specified.

Transitions

Page Transition

Sets the default transition type when changing to this page.
"Clear Screen With Background Color" erases previous page using the background color prior to drawing new page.
"Don't Clear Previous Screen" draws the new page directly over the previous page without clearing anything.
"Mask Previous Screen With Alpha Color" takes the Alpha Color at and paints over previous page prior to drawing new
page.
"Mask Previous Screen With Gray" converts all pixels from previous page to grayscale prior to drawing new page.

Transition Color

When Page Transition is "Clear Screen With Background Color" this specifies the default Background color of each
page, which may be overwritten in each page's own properties.

When Page Transition is "Mask Previous Screen With Alpha Color" this specifies a color mask that dims the
previous page so that the current page looks like a popup on top of the last page.

Language

Current Language File

The name of the default language the Localization engine will boot up with. None means no translation, or the
language the GUI was designed with.

Remove Default Language

A button to remove the default language.

Select Default Language

This button opens a File Selection dialog to select a default language file.

Automatically mark strings

Enable this checkbox to make the POT File generator parse the specified InternalRAM Initialization file and
automatically include any strings found with the syntax:
InternalRAM.string(x) = "String"
Where x is either a number or range of numbers.

Logos

Color Logo File

This is the filename of the Full-Color logo that appears second in the boot sequence. The Default is the Amulet
logo.

Select Color Logo

This launches a File Selector dialog to choose a new Color Logo.

Remove Color Logo

This button removes the current color logo

Monochrome Logo File

This is the filename of the 2-color logo (Monochrome = Black and White) that appears first in the boot sequence.
The Default is the Amulet Logo. Only applies on High Performance Hardware. This file is limited to 80x80 pixels
and must be in a png format.

Remove Mono Logo

This button removes the current mono logo. Only applies on High Performance Hardware

Select Mono Logo

This launches a File Selector dialog to choose a new Mono Logo. Only applies on High Performance Hardware

Mono Logo Color

This is the color of the Mono logo. Defaults to a dark gray

Mono Logo Background Color

This is the background color of the Mono Logo as well as the rest of the screen. Defaults to white.

Miscellaneous

Frame Buffer

Determines the number of frame buffers to use in this project. Defaults to "Double"
"Single" results in quicker page transitions and in-page updates.
"Double" results in cleaner looking, but slower, page transitions and in-page updates.
"Double on Page Change" results in a clean looking page transition but quicker in-page updates on the new page.
"Single on Page Change" results in a transition that responds quickly because you immediately see the new page
being drawn, then in-page drawing uses a double buffer for clean updates.
Note: Any active software rotation setting will override this to a "Double"

JPEG Compression

Determines how JPEG images are compressed and decompressed within this project.
"Native" results in a much smaller file, but the decompression time is longer.
"Amulet" results in a much larger file, but the decompression time is quicker.

Touch Priority Order

Determines the touch priority of layered objects. Only one object can be touched at a time and this specifies
which object will take precedence when two or more touchable objects are layered on top of each other.
"From Top to Bottom" signifies objects at a higher layer have priority over objects at a lower layer. This is the
default.
"From Bottom to Top" signifies objects at a lower layer have priority over objects at a higher layer.
Note: In GEMstudio, the lowest layer is at the top of the object list for each page, and the highest is at the bottom
of the list.

Page Buffer Size

Determines the amount of SDRAM allotted to the page buffer, in Bytes. In normal conditions this does not need
to be adjusted, but if a project has a very large page with many different objects on it, it is possible that the page
buffer size will need to be increased. The only time it is required to adjust this value is if the compiler throws a
Page Buffer Size error. That error will give the minimum amount to enter into this field. Enter a hex number with
the 0x notation. (i.e. 0x12000) By default, the Page Buffer Size is 0x10000.

UTF-8 in Metas

The regular Meta syntax does not allow UTF-8 unless this box is checked. This allows you to set String values that
contain UTF-8 characters (i.e. above ASCII)

Hardware Layers

Determines the number of Hardware Layers available for use in the project. Every hardware layer needs its own
set of Frame Buffers. This option is only available on High Performance Hardware.

Cache Fonts

This check forces the fonts used by the project to be cached into SDRAM upon boot, greatly improving the time it
takes to draw text. For High Performance Modules this is forced on.

Frame Buffer Width

High Performance Hardware only. Sets the pixel width of the frame buffer. If set, it should be equal to or larger
than the display's width (or height if rotated 90/270 degrees). In High Performance Hardware, the LCD Controller
supports a Frame Buffer that is larger than the display and the OS has functions which allow panning into this
extra-wide buffer.

Frame Buffer Height

High Performance Hardware only. Sets the pixel height of the frame buffer. If set, it should be equal to or larger
than the display's height (or width if rotated 90/270 degrees). In High Performance Hardware, the LCD Controller
supports a Frame Buffer that is larger than the display and the OS has functions which allow panning into this
extra-tall buffer.

Macro/Preprocessor
Definitions Filename

Displays the current Macro file's name. A Macro File is filled with #define's that will be used to run all widget
and script code through a preprocessor prior to compile. This allows for easier symbolic naming or short cuts for
common coding tasks.

Select Macro File

Opens a File Selection dialog to select a Macro file.

Remove Macro File

Removes the current Macro File

User Thread Filename

Displays the current User Thread filename. Contact support@amulettechnologies.com to learn about writing
your own code on the Amulet chip.

Remove User Thread File

Removes the current User Thread file

Select User Thread File

Opens a File Selection dialog to select a User Thread binary.

Debug User Thread File

This checkbox allows quicker iterative debugging the user thread binary file without having to recompile the entire
GEMstudio project by looking for the binary in /Amulet_msd/debug

GEMscript

GEMscript String Buffer Size

This is used by GEMscript API String methods which return a array. The GEMscript compiler can only allocate
arrays of a static length at compile time, so any methods that returns a string via the stack (append, mid, itoa,
and InternalRAM.string queries) will need to allocate this buffer at compile time. Each of these methods simply
initializes a string buffer and calls the equivalent method that uses a destination buffer, then returns that buffer.
See the GEMscript Help under this topic for more info

GEMscript API -> String Library -> GEMscriptStringBufferSize

Compress Binary check

GEMscript can be compressed to make a smaller binary file, then decompressed in-place upon each page load.
This adds a very small amount of time to page load times.

Automatically manage draws check

Enable this checkbox to make Amulet OS automatically call disableDraw before each GEMscript function and
enableDraw after. This allows GEMscript to call functions which would normally create multiple individual
redraw events and instead just redraw one large rectangle. This is more efficient when managing multiple large,
overlapping draws, but may be less efficient when managing small, non-overlapping draws.

Enable incremental compile check

On hardware that does not support full incremental compile, GEMscript can be still precompiled, saving significant
time on GEMscript heavy projects. Enable this checkbox to store precompiled GEMscript files for each page in a
local folder: ".projectName\output\amx"

Disable AutoSave warning check

Incremental compiles require saving changes your project prior to compiling in order to ensure the intermediate
object files are always up to date.

USB MSD

Disable USB MSD

Enable this check to prevent the USB port from enumerating a Mass Storage Device (i.e. a, Drive letter) on any
connected computer. This is a security feature to prevent tampering with the OS and Project files by anyone who
may have access to the USB port on this device. This also prevents direct programming from GEMstudio, so future
programming must be done on a secondary storage device such as a Micro SD card.

GEMstudio API
Overview

This section will cover all the tools you have access to when designing your Graphical User Interface in GEMstudio Pro.

Amulet Function Calls

Amulet has created a number of I/O objects, referred to as Amulet Widgets which can be added into your GEMstudio
project. There are two types of Amulet Widgets: Control Widgets and View Widgets. Control Widgets are input objects,
like function buttons, sliders, radio buttons, etc... Control Widgets have a function, or a set of functions, that can be
applied to them. View Widgets are output objects, like bargraphs, numeric fields, string fields, etc... View Widgets
call a function which returns the data used as the input for that particular widget. See Amulet Widgets for a detailed
description of each widget.

Amulet widgets use the href parameter to specify a function call. A function call can be a jump to another page,
a request for the value of an external variable, a command to invoke a Remote Procedure Call, and much more. A
function call can also send a command to other widgets, known as Inter-Widget Communication (IWC). See Appendix B
for a comprehensive list of all available functions.

Function Call Conventions

Amulet function calls borrow some of it syntax from HTML and JavaScript, with each GEMstudio page like a document
object in the HTML Document Object Model (DOM). Then open() method is used to load the compiled page from
flash into the page buffer, initializing it as the new document object. For example, NewPageName.open(). Once a page
has been loaded, referring to objects on that page is done through the document object. Widgets, images, and other
objects on the page are children of the document object, and have methods that can be accessed with a "dot" syntax
of "document.widgetName.methodName(parameters)"

Examples:
document.MySlider_1.value()
document specifies an object on the current page.
MySlider_1 specifies a slider widget with this name.
value() returns a value based upon the current position of the slider handle.

document.Button1.disappear()
document specifies an object on the current page.
Button1 specifies a Function Button widget with this name.
disappear() makes the widget invisible and redraws the effected display area.

Amulet function calls also borrow concepts from Java, an Object-Oriented Programming(OOP) language. When it is
required to interface to an external server, use "uart0." The uart0. can be thought of as a UART object. As in object
oriented programming, each object has its own set of data and a set of well-defined interfaces to that data. As in Java,
these interfaces are known as methods. Methods are just functions that are specific to a particular object. Each object
has its own set of methods.

Examples:
uart0.byte(0).value()
uart0 specifies that a serial message will go out uart0.
byte(0) specifies byte variable 0.
value() specifies the value of byte variable 0 is returned.

internalRAM.word(5).setValue(0xF020)
internalRAM specifies the dual port RAM onboard the Amulet.
word(5) specifies the internal RAM word variable 5.
setValue(0xF020) specifies internal RAM word variable 5 is to be set to the value 0xF020.

internalRAM.string(5).setValue("Your String")
internalRAM specifies the dual port RAM onboard the Amulet.
string(5) specifies the internal RAM string variable 5.
setValue("Your String") specifies that internal RAM string variable 5 is to contain the null terminated string "Your
String". For more information regarding string variables, see the note regarding string variables.

The same nomenclature as Java is used, where a method is called by using the object's name followed by the dot
operator, followed by the method. Amulet has added a new wrinkle with the concept of multiple byte, word and string
variables. Since there are, by default, 256 different byte variables, 256 different word variables, 256 different color
variable, and 256 different 25-character (plus Null) string variables available, there needs to be a way of specifying the
type of variable as well as the variable number. Therefore, if the object is a byte, word, color, or string variable, the
nomenclature is of the following type:

object.variable(variable #).method(argument, if needed).
object can be UART or InternalRAM. variable.
variable can be byte, word, color or string.
variable # can be a number from 0-255
method can be any number of methods described in Appendix B.

See example href command below, where a function button, when pressed, causes a Remote Procedure Call # 5 to be
sent out one of the UARTs to the external server:

uart0.invokeRPC(5)

The href line above invokes the invokeRPC() method on a UART object called uart0. That is, it calls invokeRPC() relative
to the uart0 UART object. Thus, the call to uart0.invokeRPC() causes uart0 in the Amulet controller to send out an
"invokeRPC" command.

The method invokeRPC() requires an argument (a parameter that is passed to the method that the method uses as its
input). If the parenthesis are left blank or the string "instrinsicValue" is used, the argument passed to any method is the
intrinsic value of the calling widget/object. Only Control Widgets/Objects have an intrinsic value. Function buttons can
specify an intrinsic value by specifying the intrinsicValue parameter or by including a number between the ()'s. Widgets
that can have multiple intrinsic values, like lists and sliders, can use "instrinsicValue" to pass their intrinsic value which
is dependent upon the state of the widget.

For a list of all available functions, see Appendix B.

Control Widget Function Calls

Control Widgets are user input widgets such as list widgets, slider widgets, radio buttons, checkboxes and function
buttons. META REFRESH objects can also call functions, like Control Widgets, but they can also act like a View Widget.
Typically, Control Widget/Object function calls are initiated by a "hit" of the widget. A "hit" can occur one of two ways.

The typical way is the physical "hit", which occurs when the active region of the object/widget on the touchscreen
is touched and then released while still within the bounds of the active region. The object/widget must be in focus
when letting up on the touchscreen for the object/widget to initiate its function calls. If you touch an active region, but
move off the region while still touching the touchscreen, the object/widget will lose focus, therefore, letting up on the
touchscreen will do nothing.

The alternative way a "hit" can occur is to have one Control Object/Widget invoke the forceHit() method of another
Control Object/Widget. See IWC documentation for more information.

There are three exceptions to the rule that a "hit" initiates all function calls. The first exception is scrolling, such as in
a Slider Widget. In the default mode, as soon as a pen down event occurs within the boundaries of a slider, a function
call is initiated. If, while still in the pen down state, new values of the slider are selected, new function calls will be
initiated. The second exception is the auto-repeat feature of button type widgets. If an auto-repeatable button is
touched, and stays in a pen down state longer than the time specified by the repeatDelay attribute, then a function call
is initiated. As long as the button remains in a pen down state, the function calls will repeat at the frequency specified
by the repeatRate attribute. The third exception is in the case of buttons which are set up to call their HREF upon pen-
down AND pen-up, by setting the ExecuteOn attribute to "Both". Immediatly after this type of button is hit, it will
execute its HREF. It will execute the HREF again (or the next HREF in the case of sequenced function calls) upon either
a successful pen-up within the button, or when leaving the button. This allows you to create a button that performs
different actions upon pen-down and pen-up without worrying about getting out of sequence if the user scrolls off of
the button before lifting.

The Touch Area Widget has a number of "hit" options that no other widget has. The onRelease parameter sends out a
"hit" like all other widgets, but the following options are unique to the Touch Area:
onAutoRepeat
onDoubleTap
onSlideOff
onSlideOn
onTap
onTouch

Control Objects/Widgets cannot call functions that return a value. See Appendix B for a comprehensive list of all valid
control functions.

Multiple Function Calls

Control Objects/Widgets can call multiple functions at one time by separating the functions by a comma. There is
a limit of 36 multiple functions that can be attached to a single Control Widget/Object href. To illustrate how to use
multiple functions, see the following example. To create a function button that invokes an external RPC #5 and then
links to page2, use the following href commands:

uart0.invokeRPC(5), page2.open()

Multiple function calls are performed in the order they are entered on the line, from left to right*. In the previous
example, uart0.invokeRPC(5) would be called first, and then a jump to page2 would follow. As soon as a page is linked
to, any subsequent function calls are discarded. For this reason, if it is desired to link to another page, that must be the
last function call within a multiple function call.

*Important notes regarding the order of multiple function calls: If there is a mix of UART and InternalRAM or IWC
function, the functions might not be performed from left to right. The reason for this is that UART functions are loaded
into a UART transmit buffer whereas InternalRAM and IWC functions are loaded into a different function buffer. Due
to the nature of UART transmissions, they will take a considerable amount of processor time to complete the function
call in comparison to InternalRAM and IWC functions. Therefore, any InternalRAM or IWC function which is part of
a multiple function call will most likely be finished prior to any UART function call which is part of the same multiple
function call.

Sequenced Function Calls
Control Objects/Widgets can also call sequenced functions by separating the functions by semi-colons. Sequenced
functions allow for different function calls at each successive "hit". Sequenced function calls are performed in the order
they are entered on the line, from left to right. The sequences continually wrap, so the first sequence follows the last
sequence. To illustrate how to use sequenced functions, see the following example. To create a toggle type custom
button that invokes an external RPC #5 when toggled down and invokes an external RPC #6 when toggled up, use the
following href commands:

uart0.invokeRPC(5);uart0.invokeRPC(6)

Sequenced function calls can also be made up of multiple function calls. There is a limit of 36 different sequences
per Control Widget/Object href and each sequence can have a maximum of 36 multiple function calls. To help
illustrate this, use the previous example, but instead of invoking RPC #5 for one sequence, and then RPC #6 for another
sequence, let's assume we would like the first sequence to invoke RPC #4 and RPC #5, and the second sequence to
invoke RPC #6 and RPC #7. To accomplish this, use:

uart0.invokeRPC(4),uart0.invokeRPC(5);uart0.invokeRPC(6),uart0.invokeRPC(7)

notice the sequences are separated by the semi-colon, and the multiple function calls are separated by the commas.

Using Commas and Semi-colons within Strings stored in Function Calls

Since commas and semi-colons are used to distinguish Multiple Function Calls and Sequenced Function Calls
respectively, in order to use commas and semi-colons within strings that are used in function calls, you must use the
escape character '\' prior to the comma or semi-colon. For example, to set InternalRAM string variable 5 to the string
"To use a comma, use the escape character; same for the semi-colon.", the href would look like this:

InternalRAM.string(5).setValue("To use a comma\, use the escape character\; same for the semi-colon.")

Using Backslashes, Commas and Semi-colons within Strings stored in Function Calls

Since commas and semi-colons are used to distinguish Multiple Function Calls and Sequenced Function Calls
respectively, in order to use commas and semi-colons within strings that are used in function calls, you must use
the escape character '\' prior to the comma or semi-colon. Conversely, since the backslash('\') is used as the escape
character, in order to use a backslash within a string, you must use two backslashes in a row. For example, to set
InternalRAM string variable 5 to the string "To use a comma, or backslash \ use the escape character; same for the
semi-colon.", the href would look like this:

InternalRAM.string(5).setvalue("To use a comma\, or back slash \\ use the escape character\; same for the semi-

colon.")

If you fail to use the escape character in front of commas, semi-colons and back slashes, you will get an error when you
try to Run or Program the project, although it won't explicitely say that the escape character is missing. Rather you will
get an error complaining of a missing link.

View Widget Function Calls
View Widgets are used for displaying data. View Widgets include lineplots, bargraphs, and numeric fields. View Widget
function calls are initiated by either a timer event or the IWC (inter-widget communication) method forceUpdate. The
frequency of the timer event is specified by the updateFreq parameter of each view widget. They can only call a single
function, and that function must return either a byte, word(2-bytes), or UTF-8 string. The returned value is used as the
input to the View Widget.

Some Control Widgets can also have limited View widget functionality via the initHref parameter. This allows a widget
to poll some type of data, internal or external, for use to initialize the widget's state. For instance, the initial position of
a slider's handle can "remember" what it was from the last time it left the page by using the same InternalRAM variable
in the Href and InitHref. The initHref is called anytime the widget is initialilzed, including the forceUpdate method. See
each widget's documentation on how to use the initHref.

Amulet Page Functions

GEMstudio Pro uses Page Functions in order to enter logic that goes beyond the simple href function calls that control
widgets can launch. Page functions are split up into two categories, but both are entered on the same dialog box

1) GEMscript is a simple C-like scripting language with added functionality of Amulet-style function calls. Script code
is separated with an opening <script> and closing </script> tag to differentiate them from other objects in the Page
Functions dialog. The GEMscript API is in its own document accessible through the GEMstudio Help menu.

2) META Refresh Objects are multi-purpose objects which can be launched either by a timer or by being invoked by
another function or widget. Page functions can also perform an if-then-else logic, allowing for more complex timers.
Click here for more in-depth documentation on META Refresh Objects and the different ways they can be used as
Amulet page functions.

For further instructions and tips on the Page Functions Editor, please click here.

Below are a couple of templates that can be used to copy and paste into the Page Functions window:

To create a script that automatically launches once upon page load:
<script>
@load()
{
 internalRAM.string(0) = "Hello World!"
}
</script

To create an unconditionally launched function:
<meta http-equiv="Refresh" content="0,0.01;url=InternalRAM.byte(0).setValue(0xFF);name=initMeta">

To create a conditionally launched function:
<meta http-equiv="Refresh" content="0.2;
 if=InternalRAM.byte(0).value();
 eq=0xFF;
 then=InternalRAM.byte(0).setValue(0), Page_2.open();
 else=InternalRAM.byte(0).increment();
name=testerMeta">

For a list of all available functions, see Appendix B.

<EMBED>

For including a text file into the GEMstudio project, the <EMBED> function is used. All text within the included file will
be treated as if it were part of the page and located within the page at the same location as the <EMBED> tag. This
function can be used anywhere within the page. It is especially useful for replacing a number of META Refresh tags
that exists in multiple pages, but cannot be used for GEMscript. If you wish to include the same GEMscript on multiple
pages, please see Nested Pages

URL="filename", where "filename" is the name of the text file to include at that specific location within the page.
Example:
<EMBED URL="examplefilename">

Amulet Internal RAM

Amulet has over 8 KBytes of onboard RAM which we have turned into virtual dual port RAM. By default, there are
256 different byte variables, 256 different word (16-bit) variables, 256 different Color (32-bit) variables, and 256
different 25-character null terminated string variables (25+1=26 bytes allocated per string variable). The number of
each (and length of strings) can be set in the InternalRAM tab of the Project Properties. Amulet Widgets can read or
write to these Internal RAM variables. The Internal RAM variables can also be saved in flash, thus giving the variables
permanence. In addition, an external processor can read and write to these Internal RAM variables as well. The
external processor can send an unsolicited serial message to the Amulet to read or write to the Internal RAM variables.
 This means that the external processor is not required to be the Amulet's slave. Follow this link to learn more about
the communication protocol. You can setup your pages to a) have the Amulet always be the master, b) have your
processor always be the master or c) have a dual master system.

Some of the main features of InternalRAM:

1) Internal RAM variables can survive from page to page of your GUI project.
2) Internal RAM can be saved back to the flash, so the variable can persist even after powering down.
3) Internal RAM variables can be used as arguments within Amulet methods. i.e.
(UART.byte(0).setValue(InternalRAM.byte(2)))
4) Internal RAM variables can be used as variable indices. i.e. (UART.byte(InternalRAM.byte(0)).setValue(2))
5) Internal RAM variables can be set or requested from GEMscript. i.e. (new int a = InternalRAM.byte(0))

The following documentation refers to Internal RAM usage in function calls outside of GEMscript. For syntax and
examples inside GEMscript, please see the GEMscript API documentation, available from GEMstudio's Help menu.

Internal RAM nomenclature

The href nomenclature for Internal RAM's is InternalRAM.variableType(variableNumber).method()

Where:

 InternalRAM is the specifier for Amulet's dual port Internal RAM.

 variableType is the type of variable, either byte, word or string.

 variableNumber is the variable index within the variable type. 0-255 for bytes, 0-255 for
words and 0-198 for strings.

 method() is the name of the method to be performed by the InternalRAM variable.

As a point of reference, the nomenclature to specify the Internal RAM variables in the code is the same as specifying
external variables. External variables expect the UART or USB object to be used whereas the Internal RAM variables use
the InternalRAM object. For example, to have an Amulet Bargraph Widget tied to an external byte variable # 2, the href
attribute would look like this:

"uart0.byte(2).value()"

To be tied to an Internal RAM byte variable # 2, then the href attribute would look like this:

"InternalRAM.byte(2).value()"

The uart0 object specifies the Amulet will send out a serial message to an external processor that is connected to the
UART port uart0 requesting the value of the external byte variable number 2. The InternalRAM object specifies that the
Amulet will read the value of the Internal RAM byte variable number 2. The InternalRAM object will not send out any
serial requests since the Amulet is capable of reading the Internal RAM directly.

Using InternalRAM variables as method arguments

A powerful feature of Internal RAM variables is that they can be used as arguments within Amulet href methods. This
means that they can be changed at run-time by your external processor. Internal RAM byte, word and string variables
can all be used as method arguments. For example, to have a button send out an RPC that is defined by Internal RAM
byte variable #1, you would use the following nomenclature:

"uart0.invokeRPC(InternalRAM.byte(1))"

The value which is contained within Internal RAM byte variable #1 would be sent out as the RPC number over the UART
port named uart0.
Another example which sends out an Internal RAM string variable:

"uart0.string(0).setValue(InternalRAM.string(2))"

This sends the string contained within Internal RAM string variable #2 out the UART port named uart0 as a "set external
string variable #0" command to an external processor.
When using Internal RAM variables as method arguments, use the following naming conventions:

InternalRAM.byte(x)
InternalRAM.string(x)
InternalRAM.word(x)

Do not end with .value().

Using InternalRAM byte variables as variable indices

Another powerful feature of Internal RAM variables is that they can be used as variable indices for the base variable
type. Since variable indeces only range from 0x00-0xFF, only Internal RAM byte variables can be used as variable
indices. For example, to have a button set an external byte variable that is defined by InternalRAM byte #1 to a value of
0x20, you would use the following:

"UART.byte(InternalRAM.byte(1)).setValue(0x20)"

The value contained within Internal RAM byte variable #1 would be used as the external byte variable number to set to
0x20.
Another example which reads the Internal RAM word variable defined by InternalRAM byte variable #0 would use the
following:

"InternalRAM.word(InternalRAM.byte(0)).value()"

The value contained within Internal RAM byte variable #0 would be used as the Internal RAM word variable number to
read from.
When using Internal RAM variables as variable indices, use the following naming convention:

InternalRAM.byte(x)

Do not end with .value().

Note: Internal RAM byte variables can only be used as a variable index of the base variable type of an href function. It
cannot be used as an index to an Internal RAM variable being used as a method argument. That means the following
CANNOT be used:

"uart0.invokeRPC(InternalRAM.byte(InternalRAM.byte(5)))"

It is acceptable to have an href which uses Internal RAM variables as both a variable index as well as an argument. It
can be a little confusing to look at, though. The following is a valid href:

"InternalRAM.word(InternalRAM.byte(5)).setValue(InternalRAM.word(6))"

Which would result in the Internal RAM word variable number defined by the value of InternalRAM byte variable #5 set
to the value of Internal RAM word variable #6.

Using InternalRAM string variable for a button label

When using an InternalRAM string as the label for a button which is using FromInitHref as its label, the initHref
parameter of the button should look like: InternalRAM.label(x).value(), where x is the index of the Internal RAM string
variable. There is not a separate bank of Internal RAM label variables, this function will return the string associated
with Internal RAM string variable # x. Due to the requirement of the button to have a label returned to it, it was
necessary to create an InternalRAM label variable, but it shares the exact same memory space as the Internal RAM
string variables. The Internal RAM label should only be used in this application.

Initializing Internal RAM variables at compile time

By default, all Internal RAM variables are initialized to zero. You can initialize Internal RAM variables at compile time
by including an initialization file in your project. The initialization file must have an "ini" extension. You can include the
initialization file in your project by selecting the file in the Project Options, under the InternalRAM tab:

Inside the initialization file, any line preceded with // is treated as a comment. All initializations must be located in the
far left column, so do not tab over. The GEMcompiler recognizes both decimal and hexadecimal numbers.

Initializing single Internal RAM variables

The syntax within the include file to initialize a single Internal RAM variable is as follows:

InternalRAM.variableType(variableNumber) = value

Where:

 variableType is the type of variable, either byte, word, color or string.

 variableNumber is the variable index within the variable type. 0-255 for bytes, 0-255 for
words, and 0-255 for strings.

 value is the initialization value of the Internal RAM variable (range if byte 0-0xFF, if word
0-0xFFFF, if color #rrggbb or #rrggbbaa, if string 1-250 character string)

Examples:

InternalRAM.byte(0xFE) = 0x7F
InternalRAM.word(32) = 4000
InternalRAM.color(0) = #800080
InternalRAM.color(1) = #408000FF
InternalRAM.color(2) = "green"
InternalRAM.color(3) = orange
InternalRAM.string(0) = "First String"

Internal RAM colors can be entered using the #rrggbb or #rrggbbaa convention. If the aa is left off, the alpha channel
is saved as fully opaque (0xFF) internally. Colors can also be initialized by using the HTML color names with or without
quotes. If the Internal RAM color variable is going to be used as a generic 32-bit variable as opposed to an actual color
then the value should be entered using either decimal or hexadecimal numbers as opposed to the #rrggbb convention.
The reason for this is because at compile time, the #rrggbbaa format is translated into a 0xaabbggrr hexadecimal
format. If the Internal RAM color is initialized using a decimal or hexadecimal number the compiler will not perform
the translation. For instance, entering InternalRAM.color(0) = #4080C0 would internally be saved as 0xFFC08040, but
entering InternalRAM.color(0) = 0x4080C0 would internally be saved as 0x004080C0.

There is an important thing to note regarding the 256 25-character plus 1 byte Null strings. It is acceptable to
have strings and initialize strings that are longer than 25 characters. You just need to be aware that the string
will run on into the next string variable's RAM space. So, if you know your Internal RAM strings are going to be
more than 25 characters, you might want to only use every other string variable index. i.e. InternalRAM.string(0),
InternalRAM.string(2), InternalRAM.string(4)...etc. Keep in mind that this will effectively give you only 128 51-character
string variables instead of the standard 256. In this example, the strings are 51 characters instead of 50 beacause the
null between string(0) and string(1) becomes a usable character.

When initializing Internal RAM strings, user-defined wraps can be specified by entering "\n" within the string. Since we
use double quotes to define a string, to have a literal double quote appear in the string, enter two double quotes in a
row.

User-defined wrap example: InternalRAM.string(0) = "top line\nbottom line"
Double quote example: InternalRAM.string(0) = """this phrase"" is quoted"

Initializing multiple Internal RAM variables

It is also possible to initialize a block of contiguous Internal RAM variables. The syntax to initialize a block of Internal
RAM variables is as follows:

InternalRAM.variableType(variableNumberStart-variableNumberEnd) = value

Where:

 variableType is the type of variable, either byte, word, color or string.

 variableNumberStart is the variable index within the variable type. 0-255 for bytes,
0-255 for words, 0-255 for color, and 0-255 for strings.

 variableNumberEnd is the variable index within the variable type. 0-255 for bytes, 0-255
for words, 0-255 for color, and 0-255 for strings.

 value is the initialization value of the Internal RAM variable (range if byte 0-0xFF, if word
0-0xFFFF, if color 0 - 0xFFFFFFFF, if string 1-25 character string)

Example:

InternalRAM.byte(0xFC-0xFF) = 0x7F
InternalRAM.word(0x00-0xFF) = 0xFFFF
InternalRAM.color(0x00-0xFF) = 0xFFFFFFFF
InternalRAM.string(0-10) = "undecided"

Note: When initializing a block of contiguous Internal RAM strings, the initialization string must be 25 characters or less.
By default, each Internal RAM string variable holds a maximum of 25 characters and null character.

Initializing special attributes in Internal RAM string variables

When initializing string variables, it is possible to specify special attributes, such as font style, line feeds and upper ASCII
characters.

The font styles available are plain, bold, italic, underline and strikethrough. If it is desired to set the font style within
the initInternalRAM file, that can be done by using the font style escape sequence "%s(xxx)", where xxx is bit
representation of the desired font style. See the table below for the list of font styles and their corresponding bit
location. Each font style is represented by a single bit within the font style byte. Multiple font styles can be specified at
one time, except in the case of plain, which must stand alone.

Font Style Bit Location

Italic 0x02

Strikethrough 0x04

Bold 0x20

Underline 0x40

Plain 0x80

For example, to initialize InternalRAM string #0 with a string that is formatted to look like this: "this is bold" you would
use the following:

InternalRAM.string(0) = "this is %s(0x20)bold"

Line feeds are entered in the initInternalRAM file as "\n". For example, to initialize InternalRAM string #1 with a string
that is formatted to look like this:

"this is

the break"

You would use the following:

InternalRAM.string(0) = "this is\nthe break"

Reloading the initialized InternalRAM variables on a per page basis

By default, the InternalRAM variables are loaded from the serial data flash into the internal SRAM of the Amulet
GEM-compliant Chip only once upon power up. If it is desired to reload the internal SRAM with the InternalRAM
variables that are stored in the serial data flash on a per page basis, you can use an Amulet META tag with the
ReloadInternalRAM attribute to specify this. There are three dot modifiers that will specify the scope of the reloading
from serial data flash: .page, .project, and .notThisPage. The dot modifier .page will reload the InternalRAM only
on the page that the meta is included. By using the dot modifier .project, every page in the project will reload the
InternalRAM from the serial data flash unless a page has the meta using ReloadInternalRAM.notThisPage.

If the InternalRAM is to be reloaded, it happens immediately upon the loading of the page. Any time that page is
navigated to, the InternalRAM will be reloaded.
Example usage:

 <META name="Amulet" content="ReloadInternalRAM.page">

Internal RAM specific methods
There are a number of methods that are specific to the Internal RAM variables. All four variable types have their own
specific methods. See the tables below for a description of all available methods. If you need more complex control
over InternalRAM variables, you can read and write to them from a scripting language called GEMscript. In GEMstudio,
go to the Help menu and select GEMscript API for more information on GEMscript.

InternalRAM Byte Method Descriptions

InternalRAM Byte Methods Descriptions

InternalRAM.byte(z).add(x) Add the byte value x to the Internal RAM byte
variable z. Result is stored in Internal RAM byte
variable z.

InternalRAM.byte(z).and(x) Bitwise AND the Internal RAM byte variable z with
the byte value x. Result is stored in Internal RAM
byte variable z.

InternalRAM.byte(z).copyToRamByte(x) Copy value of Internal RAM byte variable z into
Internal RAM byte variable x.

InternalRAM.byte(z).dec() Decrement the value of Internal RAM byte
variable z.

InternalRAM.byte(z).div(x) Divide the Internal RAM byte variable z by the
byte value x. Result is stored in Internal RAM byte
variable z.

InternalRAM.byte(z).inc() Increment the value of Internal RAM byte variable
z.

InternalRAM.byte(z).maskedValue(x) Return the value of Internal RAM byte variable z
ANDed with the mask x.

InternalRAM.byte(z).mul(x) Multiply the Internal RAM byte variable z by the
byte value x. Result is stored in Internal RAM byte
variable z.

InternalRAM.byte(z).or(x) Bitwise OR the Internal RAM byte variable z with
the byte value x. Result is stored in Internal RAM
byte variable z.

InternalRAM.byte(z).setValue(x) Set the value of Internal RAM byte variable z to
the byte value x.

InternalRAM.byte(z).sub(x) Subtract the byte value x from the Internal RAM
byte variable z. Result is stored in Internal RAM
byte variable z.

InternalRAM.byte(z).value() Return the value of Internal RAM byte variable z.

InternalRAM.byte(z).xor(x) Bitwise EXCLUSIVE OR the Internal RAM byte
variable z with the byte value x. Result is stored in
Internal RAM byte variable z.

InternalRAM Word Method Descriptions
InternalRAM Word Methods Descriptions

InternalRAM.word(z).add(x) Add the word value x to the Internal RAM word
variable z. Result is stored in Internal RAM word
variable z.

InternalRAM.word(z).and(x) Bitwise AND the Internal RAM word variable z with
the word value x. Result is stored in Internal RAM
word variable z.

InternalRAM.word(z).calArraySet() Sets the calibration constants into successive Internal
RAM word variables, starting with z.
InternalRAM.word(z)= mx128
InternalRAM.word(z+1) = bx
InternalRAM.word(z+2) = my128
InternalRAM.word(z+3) = by
Used to determine the calibration constants to enter
into a touch panel configuration file. See Removing
Touchpanel Calibration for more info.

InternalRAM.word(z).copyToRamWord(y) Copy value of Internal RAM word variable z into
Internal RAM word variable y.

InternalRAM.word(z).dec() Decrement the value of Internal RAM word variable
z.

InternalRAM.word(z).div(x) Divide the Internal RAM word variable z by the
word value x. Result is stored in Internal RAM word
variable z.

InternalRAM.word(z).inc() Increment the value of Internal RAM word variable z.

InternalRAM.word(z).maskedValue(x) Return the value of Internal RAM word variable z
ANDed with the mask x.

InternalRAM.word(z).mul(x) Multiply the Internal RAM word variable z by the
word value x. Result is stored in Internal RAM word
variable z.

InternalRAM.word(z).or(x) Bitwise OR the Internal RAM word variable z with the
word value x. Result is stored in Internal RAM word
variable z.

InternalRAM.word(z).setValue(x) Set the value of Internal RAM word variable z to the
word value x.

InternalRAM.word(z).sub(x) Subtract the word value x from the Internal RAM
word variable z. Result is stored in Internal RAM
word variable z.

InternalRAM.word(z).value() Return the value of Internal RAM word variable z.

InternalRAM.word(z).xor(x) Bitwise EXCLUSIVE OR the Internal RAM word
variable z with the word value x. Result is stored in
Internal RAM word variable z.

InternalRAM Color Method Descriptions
InternalRAM Color Methods Descriptions

InternalRAM.color(z).set(x) Sets the Internal RAM color variable z to x using
color entry conventions. If using the color variable
as a 32-bit integer use a decimal or hex number,
but if using as a color variable, use the #rrggbb or
#rrggbbaa format.

InternalRAM.color(z).setBlue(x) Sets the Blue Byte of Internal RAM color variable z
to x

InternalRAM.color(z).setGreen(x) Sets the Green Byte of Internal RAM color variable
z to x

InternalRAM.color(z).setRed(x) Sets the Red Byte of Internal RAM color variable z
to x

InternalRAM.color(z).value() Returns the 32-bit value of Internal RAM variable
color z

InternalRAM String Method Descriptions
InternalRAM String Methods

Descriptions

InternalRAM.string(z).appendChar('y') Append the single UTF-8 character y to the
Internal RAM string variable z. Result is stored in
Internal RAM string variable z.

InternalRAM.string(z).appendString("y") Append the string y to the Internal RAM string
variable z. Result is stored in Internal RAM string
variable z.

InternalRAM.string(z).appendToRamString(x) Append the string stored at Internal RAM string
variable z to the Internal RAM string variable
x. Result is stored in the Internal RAM string
variable pointed to by the Internal RAM byte
variable x.
It might be easier to visualize it as:
InternalRAM.string(InternalRAM.byte(x))
Note, the above is for visualization purposes
only, do not attempt to use the above syntax.

InternalRAM.string(z).appendViaByteVarPtr(x) Append the string stored at Internal RAM
string variable z into the Internal RAM
string variable whose index is the byte value
stored at Internal RAM byte x. Result is stored in
the Internal RAM string variable pointed to by
the Internal RAM byte variable x.
It might be easier to visualize it as:
InternalRAM.string(InternalRAM.byte(x))
Note, the above is for visualization purposes
only, do not attempt to use the above syntax.

InternalRAM.string(z).backspace() Delete last character from the Internal RAM
string variable z.

InternalRAM.string(z).clear() Clear out the Internal RAM string variable z.

InternalRAM.string(z).copyToRamString(x) Copy string stored at Internal RAM
string variable z into Internal RAM string variable
x. Result is stored in Internal RAM string variable
x.

InternalRAM.string(z).copyViaByteVarPtr(x) Copy string stored at Internal RAM
string variable z into the Internal RAM
string variable whose index is the byte value
stored at Internal RAM byte x. Result is stored in
the Internal RAM string variable pointed to by
the Internal RAM byte variable x.

InternalRAM.string(z).setChar('y') Stores the UTF-8 character y into Internal
RAM string variable z. setChar() adds the null
termination to the character y.

InternalRAM.string(z).setValue("y") Stores the UTF-8 string y into Internal RAM
string variable z.

InternalRAM.string(z).stringToByte(x) Converts the ASCII string of a decimal number
stored in Internal RAM string variable z to an
actual number to be stored in Internal RAM byte
variable x.

InternalRAM.string(z).stringToWord(x) Converts the ASCII string of a decimal number
stored in Internal RAM string variable z to an
actual number to be stored in Internal RAM
word variable x.

InternalRAM.string(z).value() Return the null terminated string of Internal
RAM string variable z.

Miscellaneous InternalRAM Method Descriptions
InternalRAM Methods Descriptions

InternalRAM.clearRPCBuf() Clears the internalRAM RPC buffer.

InternalRAM.invokeRPC(x) Adds the RPC x, to the internalRAM RPC
buffer.

InternalRAM.saveToFlash() Saves the current state of all the Internal RAM
variables (byte, word and string) in the serial
data flash. There is a 100,000 max write limit
on the life of the serial data flash.

Setting the number of available variables

The default 256 unique InternalRAM variables of each type is plenty for many types of projects, but some applications
call for more. This can be accomplished on High Performance models by going to the Project Properties and changing the
values under the InternalRAM tab:

The maximum number of variables of each type is 32768. The maximum number of bytes per string is technically 65535
bytes, but this can quickly eat up a whole lot of non-volatile memory as well as DRAM, leading to a ballooning file size and
long load times, so it is best to optimize these values to suit your needs.

Using more than 256 variables in the Communications Protocol

One of the benefits of InternalRAM is that the Host processor can read from and write to it using the communications
protocol. This protocol was first designed with a limit of 256 variables in mind, so by the default the protocol can only
address the first 256 variables of each type. To increase this size, go to the Project Properties under the Comm tab and
check the box for "Extend Communications Protocol Addressing from 8 to 16 bit"

In the case of the CRC protocol this adds one byte to every Get or Set InternalRAM message. In the ASCII protocol, this adds
two bytes as the extra address byte is encoded into ASCII Hex.

Amulet Widgets

Widgets are broken up into three categories:

1. Basic Objects do not have any touchpanel input nor do they provide any dynamically configurable output.
2. Control widgets take user inpup from the touchpanel and invoke functions to control other actions.
3. View widgets provide visualization of data

Object

The basic object consists of three types of objects. They have limited or no methods

Image

Although they cannot represent data like other View Widgets can, Images do have internal methods that can be
invoked by other Control Widgets/Objects. See Inter-Widget Communications for the list of available methods for each
object/widget.

Image Parameter Attributes:

Parameter="file" value="image" — Specifies the image to use. See Image Formats for supported image types.

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Image is to start out invisible. If the
Image starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="cacheImage" value="CHECKED" or "UNCHECKED" — Specifies if the Image is loaded into project-specific
SDRAM in an uncompressed format for immediate use from any page within the project. All cached images are loaded
into SDRAM prior to the first page being displayed, so the more images that are cached, the longer it will take for the
initial page to be displayed. Page-to-page transition times can be dramatically reduced by caching images.

Optional Image Parameter Attributes:

Parameter="jpegOverride" value="drive:/folder(s)/file" — Specifies the JPEG image that will take precedence over
the image specified in the file attribute. drive: specifies the flash drive, where 0: is the onboard eMMC and 1: is the SD
card slot. drive: is optional and defaults to 0:, the onboard eMMC, if not specified. /folder(s) specifies the location of
the file within the given drive. If /folder(s) is not specified the default drive is 0:/Amulet_msd/images. If the initial / is
not present then the folder will be relative to 0:/Amulet_msd/images, but if the initial / is present, the folder will be
relative to the root of 0:/. file is the name of the JPEG image. The file need not have the .jpeg or .jpg extension, but
the file must be a valid jpeg image that has the exact same dimensions as the image specified in the file attribute. For
examples, "0:/Amulet_msd/images/new.jpg" is equal to "/Amulet_msd/images/new.jpg" which is equal to "new.jpg".
Only valid in the High Performance Module.

Parameter="opacity" value="number" — Specifies the initial opacity of the image in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="porx" value="number" — Specifies the X coordinate for the Point Of Rotation, the point at which the
image rotates about when the rotation is non-zero. This also specifies the origin point of the scaling when scalePercent
is not 100. The range is - 32768 to +32767 and is relative to the image, where 0 is the left of the image. This can be
changed at any time with the setporx(x) IWC command. If this parameter is not added to the widget, it will default to
the center of the widget.

Parameter="pory" value="number" — Specifies the Y coordinate for the Point Of Rotation, the point at which the
image rotates about when the rotation is non-zero. This also specifies the origin point of the scaling when scalePercent
is not 100. The range is - 32768 to +32767 and is relative to the image, where 0 is the top of the image. This can be
changed at any time with the setporx(x) IWC command. If this parameter is not added to the widget, it will default to
the center of the widget.

Parameter="rotation" value="number" — Enables image rotation and specifies the initial angle (in single degrees) of
rotation about the point specified with the porx and pory parameters. The range is 0 to 359, wrapping with a modulus
360. For example, setting the rotation to 365 will result in 365 % 360 = 5. This can be changed with the setrotation(x)
IWC command IF AND ONLY IF the rotation parameter has been added to the widget to enable rotation. Defaults to 0.

Parameter="scalePercent" value="number" — Enables image scaling and specifies the initial dynamic scaling factor
of the image, specified in percent of original size. Range is 1 to maxScalePercent, with 100 being original size. Must be
less than or equal to maxScalePercent. Static scaling is when you stretch an image within GEMstudio, which creates a
new image file with that size upon compile. Dynamic scaling takes the image file and scales it up or down at runtime,
like during a page load or when changing the scaling dynamically through an IWC. This can be changed with the
setScalePercent(x) IWC command if the scalePercent parameter has been added to the widget. Defaults to 100 (original
image size).

Parameter="maxScalePercent" value="number" — Specifies the maximum scale factor of the image, specified in
percent of the original size. Defaults to 100, which means scalePercent can only scale down until you change this
default. Scaling up, especially scaling factors above 200%, will result in a pixelated image. If you want large scaling
effects, it is recommended that your provided image be the largest you want and you only scale down.

Parameter="noSDRAM" value="CHECKED" or "UNCHECKED" — Specifies if the image(s) are NOT loaded into page-
specific SDRAM prior to drawing the object. Having a copy of images in the SDRAM speeds up drawing of this widget.
With this parameter checked, every time any part of the widget is repainted, the image will again be pulled off of the
flash, decompressed into temporary SDRAM, then blended into the frame buffer. Checking this, especially on large
images, may cause significant slowdown in GUI responsiveness, so it should be used sparingly. This has no effect if the
images are already in the global cache. Default is UNCHECKED.

Animated Image

Animated Images have internal methods that can be invoked by other Control Widgets/Objects. See Inter-Widget
Communications for the list of available methods for each object/widget.

Animated Image Parameter Attributes:

Parameter="file" value="image" — Specifies the animation to use. Image type can be animated .GIF.

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Animated Image is to start out invisible.
If the Animated Image starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="cacheImage" value="CHECKED" or "UNCHECKED" — Specifies if the Animated Image is loaded into
project-specific SDRAM in an uncompressed format for immediate use from any page within the project. All cached
images are loaded into SDRAM prior to the first page being displayed, so the more images that are cached, the longer
it will take for the initial page to be displayed. Page-to-page transition times can be dramatically reduced by caching
images.

Parameter="opacity" value="number" — Specifies the initial opacity of the image in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="noSDRAM" value="CHECKED" or "UNCHECKED" — Specifies if the image(s) are NOT loaded into page-
specific SDRAM prior to drawing the object. Having a copy of images in the SDRAM speeds up drawing of this widget.
With this parameter checked, every time any part of the widget is repainted, the image will again be pulled off of the
flash, decompressed into temporary SDRAM, then blended into the frame buffer. Checking this, especially on large

images, may cause significant slowdown in GUI responsiveness, so it should be used sparingly. This has no effect if the
images are already in the global cache. Default is UNCHECKED.

Static Text

Static Text is an object that enables the user to write text on the display. Unlike the String Field widget, the Static Text
object does not invoke any function(s).

Static Text Parameter Attributes:

Parameter="text" value="string" — Specifies the text to be displayed. See Using Amulet Formatted Text for more
formatting options.

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the text is to start out invisible or not. If the
attribute is not CHECKED, then by default the text is visible. If the text starts out invisible, the only way to make it visible
again is via the IWC method reappear().

Parameter="fillColor" value= See color entry conventions — Specifies the desired background color. See section on
colors for more information. If no fill color is specified, the default color is the current background color.

Parameter="font" value="font, font size" — Specifies the font and font size used for the text. The
corresponding .auf/.aauf file must be included in the Amulet/Color/Configuration/Fonts folder, the project root
folder, or the project root/Fonts folder. See Amulet GEM Font Converter for more information regarding the creation
of .auf/.aauf files. Default is Bitstream Vera Sans. The default font size for the text is 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the text color. See section on colors for more
information. If no font color is specified, the default color is black.

Parameter="fontStyle" value="BOLD" or "ITALIC" or "PLAIN" — Specifies the style associated with the text font. The
available font styles are:

• BOLD — The option text is bold. (i.e. text)
• ITALIC — The option text is italicized. (i.e. text)
• PLAIN — The option text is standard font. (i.e. text)

This attribute defines the default font style of the static text defined in the text attribute.

Optional Static Text Parameter Attributes:

Parameter="border" value="number" — Specifies width, in pixels, of the border around the dimensions of the text.
Default is 0, meaning no border.

Parameter="borderColor" value= See color entry conventions — Specifies the desired text border color. See section
on colors for more information. If no border color is specified, the default color is black. Only applicable if border has a
value of 1 or greater.

Parameter="context" value="String"— Specifies the context of the text string for translation. No context is not the
same as an empty context. See Context under the Localization feature for more info.

Parameter="colorInvert" value="REGION" or "STRING" or "NONE" — Specifies if the string is shown with alternate
colors. If REGION selected, the fillColorAlt and fontColorAlt will be used instead of fillColor and fontColor. If STRING
selected, only fontColorAlt will be used instead of fontColor. If NONE selected, fillColor and fontColor will be used. Only
one value is allowed; you cannot mix color inversion properties. Default is NONE.

Parameter="fillColorAlt" value= See color entry conventions — Specifies the desired background color if colorInvert
set to REGION. See section on colors for more information. If no alternate fill color is specified, the default alternate fill
color is the logical inverse of the current fillColor.

Parameter="fontColorAlt" value= See color entry conventions — Specifies the desired font color if colorInvert set
to either REGION or STRING. See section on colors for more information. If fontColorAlt is not specified, the default
alternate font color is the logical inverse of the current fontColor.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Control Widgets

Control Widgets enable the user to interact the GUI through the touchpanel

CheckBox
A Check Box is a labeled, usually square region used to invoke a function (or set of functions) whose
argument is the value of the Check Box. To toggle (check or uncheck) a Check Box, click on the
Check Box (or label). Check Boxes can also be grouped to invoke functions whose argument is the
cumulative value of all checked Check Boxes (logical ORing). Check Boxes that have the same

groupName are considered part of a Check Box group. Within a Check Box group, any combination of Check Boxes can
be checked. If none of the Check Boxes are set within a group, then 0x00 is the href function call argument. Therefore,
you must give each Check Box a checked value that is different on a binary bit level. If one Check Box has a checked
value of 0x01, then another Check Box could have a value of 0x02, and the next a value of 0x04 (not 0x03 because that
would be the ORed value of Check Boxes 1 and 2 when checked).

Checkbox Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Check Box is to start out invisible. If the
Check Box starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="boxAlign" value="LEFT" or "RIGHT" — Specifies the location of the Check Box in relation to the label text.

Parameter="checkedValue" value="number" — Specifies the Check Box value if checked. If the Check Box is part of a
group, single bits should be used, such as 0x01, 0x02, 0x04 etc. All boxes within a Check Box group must be assigned
unique binary numbers. That is, if one Check Box has a value of 0x01(bit 0), no other Check Box within the group can
use bit 0. If the box is part of a group, the range is 1 - 255 (0x01 - 0xFF). If a lone Check Box, the checkedValue can be a
BYTE, WORD or STRING. See note regarding Control Widget intrinsic values.

Parameter="font" value="font, font size" — Specifies the font and font size used for the Check Box label. See Amulet
GEM Font Converter for more information regarding the creation of .auf font files. Default font is Bitstream Vera Sans.
Default font size is 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the desired font color. See section on colors
for more information. If no font color is specified, the default color is black.

Parameter="fontStyle" value="BOLD" or "ITALIC" or "PLAIN" — Specifies the style associated with the Check Box label
font. The available font styles are:

• BOLD — The option text is bold. (i.e. text)
• ITALIC — The option text is italicized. (i.e. text)
• PLAIN — The option text is standard font. (i.e. text)

Parameter="groupName" value="text" — For a grouped Check Box, specifies the Check Box group assignment.
Attribute not needed if a lone Check Box.

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked when a Check Box
is toggled (checked or unchecked). If the Check Box is NOT part of a Check Box group, the argument of the function is
determined by the state of the Check Box. If checked, the argument is determined by the checkedValue parameter;
if unchecked, the argument is determined by the unCheckedvalue parameter. If the Check Box is part of a group, the
argument is the cumulative value of all "checked" boxes (logical ORing). All Check Boxes within a group must call the
same href function(s). See Appendix B for all available href functions for the Check Box widget.

Parameter="initialCondition" value="ON" or "OFF" or "FromInitHref" — Specifies the initial condition of a Check Box
when the page is loaded; ON specifies a checked Check Box; OFF an unchecked Check Box. If FromInitHref is selected,
the function specified by the initHref attribute is called. The returned value determines the initial condition of all Check
Boxes within the group. If part of a group, a Check Box is checked when its checkedValue corresponds to a set bit in
the returned byte (logical ANDing). If a lone Check Box, the Check Box is checked when its internalNumber equals the
returned initHref value.

Parameter="label" value="text" — Specifies the name that appears to the right or left of the Check Box. See Using
Amulet Formatted Text for more formatting options.

Parameter="cacheImage" value="CHECKED" or "UNCHECKED" — Specifies if all three Check Box images are loaded
into project-specific SDRAM in an uncompressed format for immediate use from any page within the project. All cached
images are loaded into SDRAM prior to the first page being displayed, so the more images that are cached, the longer
it will take for the initial page to be displayed. Page-to-page transition times can be dramatically reduced by caching
images.

Optional Checkbox Parameter Attributes:

Parameter="context" value="String"— Specifies the context of the label string for translation. No context is not the
same as an empty context. See Context under the Localization feature for more info.

Parameter="unCheckedValue" value="number" — Specifies the unchecked Check Box value. This attribute is only valid
when NOT part of a Check Box group. The checkedValue can be a BYTE, WORD or STRING. See note regarding Control
Widget intrinsic values.

Parameter="trackingImage" value="image" — Specifies the image to use when the Check Box is in the pen down
state. If this attribute is not present, then a default image, a black and white square with a check in it, is used. See
Image Formats for supported image types.

Parameter="emptyImage" value="image" — Specifies the image to use when the Check Box is in the unchecked state.
If this attribute is not present, then a default image, an empty black and white square, is used. See Image Formats for
supported image types.

Parameter="fullImage" value="image" — Specifies the image to use when the Check Box is in the checked state. If
this attribute is not present, then a default image, a grayed out block and white square, is used. See Image Formats for
supported image types.

Parameter="trackingImage" value="image" — Specifies the image to use when the Check Box is in the pen down
state. If this attribute is not present, then a default image, a black and white square with a check in it, is used. See
Image Formats for supported image types.

Parameter="hrefOnHitOnly" value="CHECKED" or "UNCHECKED" — Specifies if the Check Box href function(s) is
launched only upon a "hit". By default, hrefOnHitOnly is UNCHECKED, which means if the Check Box has an initHref
function, the href of the check box (group or lone) is launched upon loading the page. The href is also launched after a
forceUpdate() call. By setting hrefOnHitOnly to CHECKED, the href will only be launched upon the Check Box physically
being selected or upon a forceHit() call.

Parameter="initHref" value="function" — Specifies the function called when the page is loaded. Use this attribute
when FromInitHref is used as the initialCondition. All Check Boxes within a group must have the same function(s). If
part of a group, the function must return a BYTE value, and the value returned is compared to the checkedValue. If the
checkedValue bit is set in the returned value, the Check Box will initially start out in the "on" position. If a lone Check
Box, then the returned value is compared to the internalNumber and if equal, the lone Check Box initially starts out in
the "on" position. See Appendix B for all available functions.

Parameter="internalNumber" value="number" — Specifies the internal number of the lone Check Box, which is used
to determine if the initial condition of the lone Check Box is on or off, if FromInitHref is used as the initialCondition.
Should only be used if using initHref. If the value returned from the initHref function matches the internalNumber
of the lone Check Box, then the Check Box starts out in the "on" position. If the internalNumber is not specified, the
checkedValue is used instead.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="noSDRAM" value="CHECKED" or "UNCHECKED" — Specifies if the image(s) are NOT loaded into page-
specific SDRAM prior to drawing the object. Having a copy of images in the SDRAM speeds up drawing of this widget.
With this parameter checked, every time any part of the widget is repainted, the image will again be pulled off of the
flash, decompressed into temporary SDRAM, then blended into the frame buffer. Checking this, especially on large
images, may cause significant slowdown in GUI responsiveness, so it should be used sparingly. This has no effect if the
images are already in the global cache. Default is UNCHECKED.

CustomButton
The Custom Button Widget uses two images (a pressed and a not pressed) to create a Custom
Button. Custom Buttons are Amulet anchors that allow a separate pressed image to appear instead
of merely inverting the image. Custom Buttons can be set to be either a "spring-loaded" or a
"toggle" button. By default, when hit, a Custom Button invokes a function (or set of functions).
Optionally, Custom Buttons can be set to auto-repeat while pressed. Initial delay and repeat
frequency can both be customized.

Each Custom Button can have a user-defined label (text or numeric) within the button image. If the label is specified
as "fromInitHref", the label will be based upon a string variable that is passed from the initHref function at run-time.
The label text will automatically wrap if the string exceeds the width of the Custom Button. User-defined wraps can be
specified by entering "\n" at the point of the desired wrap.

Custom Buttons can also be set up to auto-repeat. When pressed, an auto-repeat Custom Button delays a user-defined
amount of time then invokes a function (or set of functions) at a user-defined frequency while the Custom Button is
still being pressed. As a side benefit of the auto-repeat functionality, a Custom Button can be created that will appear
to invoke its function(s) immediately upon being pressed instead of waiting until the Custom Button is released. To
create an instant hit Custom Button, set the delay very small and the frequency at 0. The Custom Button will invoke its
function(s) after the very short delay time and not repeat again.
NOTE: To display a literal \ symbol in the label, use a double backslash in the string (e.g. 25 \\ 5 would display 25 \ 5
within the button).

Custom Button Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Custom Button is to start out invisible.
If the Custom Button starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="buttonType" value="TOGGLE" or "SPRING-LOADED" — Specifies the action of the Custom Button when
hit. TOGGLE causes the Custom Button to depress (or invert) on a pen down event and stay depressed on the ensuing

pen up event. SPRING-LOADED causes the Custom Button to depress on a pen down event and return to its original
state on the following pen up event. SPRING-LOADED is the default.

Parameter="downImage" value="image" — Image used when the Custom Button is pressed. See Image Formats for
supported image types.

Parameter="font" value="font, font size" — Specifies the font and font size used for the Custom Button label. See
Amulet GEM Font Converter for more information regarding the creation of .auf font files. Default font is Bitstream
Vera Sans. The default font size is 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the desired font color. See section on colors
for more information. If no font color is specified, the default color is black.

Parameter="fontStyle" value= "PLAIN" or "BOLD" or "ITALIC" — Specifies the style associated with the Custom Button
label font. The available font styles are:

• PLAIN — The option text is standard font. (i.e. text)
• BOLD — The option text is bold. (i.e. text)
• ITALIC — The option text is italicized. (i.e. text)

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked when the Custom
Button is hit. See Appendix B for all available functions for the Custom Button widget.

Parameter="onButtonPress" value="ALPHA" or "CUSTOM" or "DEPRESS" — Specifies the look of the Custom Button
during a pen down condition. CUSTOM causes the downImage to appear and label text, if any, to shift down and to the
right to give the illusion of being pressed. ALPHA blends a transparent color specified by alphaColor with the upImage
and prohibits the downImage from appearing. DEPRESS gives the illusion of the Custom Button being pressed using
only the upImage and the downImage will not appear. CUSTOM is the default.

Parameter="upImage" value="image" — Image used when Custom Button is not pressed. See Image Formats for
supported image types.

Parameter="cacheImage" value="CHECKED" or "UNCHECKED" — Specifies if both Custom Button images are loaded
into project-specific SDRAM in an uncompressed format for immediate use from any page within the project. All cached
images are loaded into SDRAM prior to the first page being displayed, so the more images that are cached, the longer
it will take for the initial page to be displayed. Page-to-page transition times can be dramatically reduced by caching
images.

Optional Custom Button Parameter Attributes:

Parameter="alphaColor" value= See color entry conventions — If onButtonPress equals ALPHA, this attribute specifies
the alpha color mask used to notify the user the Custom Button has been depressed. See section on colors for more
information. If no alpha color is specified, the default color is a transparent gray. If the color specified does not have an
alpha component, then it will be completely opaque, which will result in a colored rectangle appearing in place of the
Custom Button while it is touched.

Parameter="executeOn" value= "HIT" or "RELEASE" or "BOTH" — Specifies when the href function is launched,
either when the Custom Button is hit, when the Custom Button is released, or when the Custom Button is both hit and
released. If nothing is specified, the default is to "RELEASE".

Parameter="horizontalAlign" value="LEFT" or "CENTER" or "RIGHT" — Specifies the horizontal alignment of the string
associated with the label attribute within the Custom Button dimensions. Only one value is allowed; you cannot mix
horizontal alignments. Default is CENTER.

Parameter="initHref" value="function" — Specifies the function called when the page is loaded. Use this attribute
only when FromInitHref is used as the label. Only available function is of type UART.label(x).value(). See note regarding
the use of InternalRAM label variables as Custom Button labels.

Parameter="label" value="text" or "FromInitHref" — Specifies the text that appears inside the Custom Button. See
Using Amulet Formatted Text for more formatting options. The Custom Button will NOT automatically re-size to fit
the text. If there is enough vertical room, text will automatically wrap. Any text that will not fit within the confines of
the Custom Button will be truncated. User-defined wraps can be specified by entering "\n" within the text at the spot
you would like the wrap to occur. There is a maximum of 5 lines for a Custom Button label. The name field can be left
blank; blank is the default. To have the label be dynamically entered at runtime by the server, enter FromInitHref. By
default, the dynamic Custom Button label can be a maximum of 25 bytes in length. To increase the maximum number
of bytes, put the desired number in parentheses after FromInitHref. For example, to have a dynamic label up to 50
bytes long, use FromInitHref(50). The attribute initHref needs to be of the type InternalRAM.label(x).value() or (UART
or USB).label(x).value(). It will be called only once upon the loading of the page, with the string returned from the
server becoming the Custom Button label. See note regarding the use of InternalRAM label variables as Custom Button
labels.

Parameter="context" value="String"— Specifies the context of the label string for translation. No context is not the
same as an empty context. See Context under the Localization feature for more info.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="repeatDelay" value="number" — Time to delay from when the Custom Button is initially pressed until it
starts to auto-repeat. Specified in seconds, with a single floating-point number. The range is 0.01 - 655.35.

Parameter="repeatRate" value="number" — The href function call frequency while the Custom Button is being
pressed, after the initial delay determined by repeatDelay. Specified in seconds, with a single floating-point number.
The range is 0.00 - 655.35. 0.00 means do not repeat.

Parameter="verticalAlign" value="TOP" or "MIDDLE" or "BOTTOM" — Specifies the vertical alignment of the string
associated with the label attribute within the Custom Button dimensions. Only one value is allowed; you cannot mix
vertical alignments. Default is MIDDLE.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="noSDRAM" value="CHECKED" or "UNCHECKED" — Specifies if the image(s) are NOT loaded into page-
specific SDRAM prior to drawing the object. Having a copy of images in the SDRAM speeds up drawing of this widget.
With this parameter checked, every time any part of the widget is repainted, the image will again be pulled off of the
flash, decompressed into temporary SDRAM, then blended into the frame buffer. Checking this, especially on large
images, may cause significant slowdown in GUI responsiveness, so it should be used sparingly. This has no effect if the
images are already in the global cache. Default is UNCHECKED.

CustomSlider

The Custom Slider Widget acts like a regular Slider Widget, except for the fact that
you get to specify the channel image and two different handle images. The Custom
Slider Widget invokes a function (or set of functions) either upon change or release,
depending upon the hrefEvent parameter. If hrefEvent is setup as on Change, the

Custom Slider invokes the function(s) whenever the handle moves. If hrefEvent is setup as on Release , the Custom
Slider invokes the function(s) only upon releasing the handle. Touching anywhere on the channel causes the handle
to snap to that location and invoke the function(s) with the corresponding argument. The argument is determined
by the location of the handle and the limits setup with the min and max attributes. The location of the min value is
determined by the minAt attribute(left, right, top or bottom). The height and width dimensions determines whether
the Custom Slider is horizontal or vertical. The longer dimension establishes the path that the slider handle travels.

An image, channelImage, is used as the slider's channel, which must be the same dimensions as the Custom Slider
Widget. Two different images are used for the slider handle. One image, handleImage, is used when the handle is not
touched, and another, handleTrackingImage, for when the handle is active. As an option, you can specify the offset of
the handle from the center of the channel by using the handleOffset parameter.

It is possible to use a handleTrackingImage that contains transparent components. If the handleTrackingImage
does not have transparency components, then a single copy of the handleTrackingImage will be moved along the
channel and the transparency components will not be updated. If the image has transparency components, the
handleTrackingImage will be forced to be redrawn at each new location. This will result in a slightly slower update of
the tracking handle.

Custom Slider Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Custom Slider is to start out invisible
or not. If the attribute is not CHECKED, then by default the Custom Slider is visible. If the Custom Slider starts out
invisible, the only way to make it visible again is via the IWC method reappear(). If invisible not specified, the default is
UNCHECKED.

Parameter="channelImage" value="image" — Image used as the background over which the Custom Slider handle
travels. Image dimensions MUST be exactly the same as the dimensions of the Custom Slider Widget. See Image
Formats for supported image types.

Parameter="handleImage" value="image" — Image used as the Custom Slider handle when not pressed. See Image
Formats for supported image types.

Parameter="handleTrackingImage" value="image" — Image used as the Custom Slider handle when pressed. See
Image Formats for supported image types.

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked upon the event
specified in hrefEvent. See Appendix B for all available functions for the Custom Slider widget.

Parameter="hrefEvent" value="On Change" or "On Release" — The event which triggers the launching of the href
function. If set to On Change, the Custom Slider will launch the function call whenever the handle is moved. If set to On
Release, the Custom Slider will only launch the function call upon the release of the Custom Slider handle. If hrefEvent
is not specified, the default is On Change.

Parameter="initialCondition" value="number" or "FromInitHref" — Specifies handle position when the page is
loaded. The position value becomes the argument given to the href function(s). If FromInitHref is selected, the function
specified by the InitHref attribute is called. The returned value determines the handle position. [The range is 0 - 65535
(0x00 - 0xFFFF)]

Parameter="max" value="number" — The maximum value used as the argument given to the function(s) specified
in href. By default, maximum value is achieved when handle is full-right on a horizontal slider, or full-top on a vertical
slider. The range is 1 - 65535 (0x01 - 0xFFFF).

Parameter="min" value="number" — The minimum value used as the argument given to the function(s) specified in
href. By default, minimum value is achieved when handle is full-left on a horizontal slider, or full-bottom on a vertical
slider. The range is 0 - 65534 (0x00 - 0xFFFE).

Parameter="minAt" value=""LEFT" or "RIGHT" or "TOP" or "BOTTOM"" — Determines where the minimum value of
the Custom Slider is located. As the handle sweeps from the minAt location, the value increases until the maximum
value is reached at the opposite extreme of the minAt location. Default values are LEFT for horizontal sliders and
BOTTOM for vertical sliders. The options are:

• LEFT — The slider value increases from left to right. (horizontal slider only)
• RIGHT — The slider value increases from right to left. (horizontal slider only)
• TOP — The slider value increases from top to bottom. (vertical slider only)

• BOTTOM — The slider value increases from bottom to top. (vertical slider only)

Optional Custom Slider Parameter Attributes:

Parameter="handleOffset" value="number" — Specifies the number of pixels from the center of the channel the
handle is located. If a vertical slider, positive numbers shift the handle to the right and negative numbers shift it to the
left. If a horizontal slider, positive numbers shift the handle to the bottom and negative numbers shift it to the top. [The
range is -100 through 100]

Parameter="hrefOnHitOnly" value="CHECKED" or "UNCHECKED" — Specifies if the Custom Slider href function(s)
is launched only upon a "hit" or not. By default, hrefOnHitOnly is UNCHECKED, which means the Custom Slider will
launch its href upon loading the page. The href is also launched after a forceUpdate() call. By setting hrefOnHitOnly to
CHECKED, the href will only be launched upon the Custom Slider physically being selected or upon a forceHit() call.

Parameter="initHref" value="function" — Specifies the function called when the page is loaded. Use this attribute
whenever FromInitHref is used as the initialCondition. The value returned from this function call will be used as the
initial condition of the Custom Slider handle. See Appendix B for all available functions.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Only valid if FromInitHref is used as the
initialCondition. Specifies if the Custom Slider handle will wait for valid data before being displayed on the channel. If
CHECKED, the Custom Slider handle will not display until the data from the initHref function is received. If UNCHECKED,
or the attribute is not present, the Custom Slider handle momentarily starts at the minAt location until the initHref
function receives its data. If waitForInit not specified, the default is UNCHECKED.

FunctionButton

Function buttons are Amulet anchors that provide either a "spring-loaded" or a "toggle" button
image, depending upon the button type, to invoke a function (or set of functions) when hit. By
default, Function Button images appear to depress when touched. You can also setup the button
image to "shade" when touched with the alpha color. By default, when hit, a button invokes a
function (or set of functions). Optionally, Function Buttons can be set to auto-repeat while pressed.

Initial delay and repeat frequency can both be customized.

Each Function Button can have a user-defined label (text or numeric) within the button image. If the label is specified
as "fromInitHref", the label will be based upon a string variable that is passed from the initHref function at run-time.
The label text will automatically wrap if the string exceeds the width of the Function Button. User-defined wraps can be
specified by entering "\n" at the point of the desired wrap.
Function Buttons can also be set up to auto-repeat. When pressed, an auto-repeat button delays a user-defined
amount of time then invokes a function (or set of functions) at a user-defined frequency while the button is still being
pressed. As a side benefit of the auto-repeat functionality, a Function Button can be created that will appear to invoke
its function(s) immediately upon being pressed instead of waiting until the button is released. By setting the delay very
small and the frequency at 0, the button will invoke its function(s) after the very short delay time and not repeat again.
NOTE: To display a literal \ symbol in the label, use a double backslash in the string (e.g. 25 \\ 5 would display 25 \ 5 in
the button).

Function Button Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Function Button is to start out invisible
or not. If the attribute is not present, then by default the Function Button is visible. If the Function Button starts out
invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="buttonType" value="TOGGLE" or "SPRING-LOADED" — Specifies the action of the Function Button when
hit. TOGGLE causes the button to depress (or invert) on a pen down event and stay depressed on the ensuing pen
up event. SPRING-LOADED causes the button to depress on a pen down event and return to its original state on the
following pen up event. SPRING-LOADED is the default.

Parameter="onButtonPress" value="DEPRESS" or "ALPHA" — Specifies the look of the Function Button during a pen
down condition. DEPRESS gives the illusion of the button being pressed. ALPHA shades the image of the button with a
transparent color defined by alphaColor. DEPRESS is the default.

Parameter="href" value="function(s)" —The function (or multiple/sequenced functions) invoked when the Function
Button is hit. See Appendix B for all available functions for the Function Button widget.

Parameter="label" value="text" or "FromInitHref" — Specifies the text that appears inside the Function Button.
See Using Amulet Formatted Text for more formatting options. The button will NOT automatically re-size to fit the
text. If there is enough vertical room, text will automatically wrap. Any text that will not fit within the confines of the
button will be truncated. User-defined wraps can be specified by entering "\n" within the text at the spot you would
like the wrap to occur. There is a maximum of 5 lines for a button label. The name field can be left blank; blank is the
default. To have the label be dynamically entered at runtime by the server, enter FromInitHref. By default, the dynamic
button label can be a maximum of 25 characters in length. To increase the maximum number of characters, put the
desired number in parentheses after FromInitHref. For example, to have a dynamic label up to 50 characters long, use
FromInitHref(50). The attribute initHref needs to be of the type UART.label(x).value(). It will be called only once upon
the loading of the page, with the string returned from the server becoming the button label. See note regarding the use
of InternalRAM label variables as button labels.

Optional Function Button Parameter Attributes:

Parameter="context" value="String"— Specifies the context of the label string for translation. No context is not the
same as an empty context. See Context under the Localization feature for more info.

Parameter="borderColor" value= See color entry conventions — Specifies the desired Function Button border color.
See section on colors for more information. If no border color is specified, the default color is black.

Parameter="fillColor" value= See color entry conventions — Specifies the desired Function Button fill color. See
section on colors for more information. If no fill color is specified, the default color is the current background color.

Parameter="font" value="font, font size" — Specifies the font used for the Function Button label. See Amulet GEM
Font Converter for more information regarding the creation of .auf font files. Default is Bitstream Vera Sans. The font
size for the Function Button label defaults to 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the desired font color. See section on colors
for more information. If no font color is specified, the default color is black.

Parameter="fontStyle" value="Plain" or "Bold" or "Italic"— Specifies the style associated with the button label font.
The available font styles are:

• Bold — The option text is bold. (i.e. text)
• Italic — The option text is italicized. (i.e. text)
• Plain — The option text is standard font. (i.e. text)

Parameter="alphaColor" value= See color entry conventions — If onButtonPress equals ALPHA, this attribute specifies
the alpha color mask used to notify the user the Function Button has been depressed. See section on colors for more
information. If no alphaColor is specified, the default color is a transparent gray. If the color specified does not have an

alpha component, then it will be completely opaque, which will result in a colored rectangle appearing in place of the
button while it is touched.

Parameter="executeOn" value= "HIT" or "RELEASE" or "BOTH" — Specifies when the href function is launched,
either when the button is hit, when the button is released, or when the button is both hit and released. If nothing is
specified, the default is to "RELEASE".

Parameter="horizontalAlign" value="LEFT" or "CENTER" or "RIGHT" — Specifies the horizontal alignment of the string
associated with the label attribute within the Function Button dimensions. Only one value is allowed; you cannot mix
horizontal alignments. Default is CENTER.

Parameter="initHref" value="function" — Specifies the function called when the page is loaded. Use this attribute
only when FromInitHref is used as the label. The string value returned from the function call will be used as the button
label. Only available function is of type UART.label(x).value(). See note regarding the use of InternalRAM label variables
as button labels.

Parameter="intrinsicValue" value="text" or "number" — Specifies the intrinsic value of the button, which can be
passed to functions in the button's own Href or queried by other objects who request this button's intrinsic value. The
value can be a UTF-8 encoded string or a number from 0-65535.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="repeatDelay" value="number" — Time to delay from when teh Function Button is initially pressed until it
starts to auto-repeat. Specified in seconds, with a single floating-point number. The range is 0.00 - 655.35.

Parameter="repeatRate" value="number" — The href function call frequency while the Function Button is being
pressed, after the initial delay determined by repeatDelay. Specified in seconds, with a single floating-point number.
The range is 0.00 - 655.35. 0.00 means do not repeat.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="verticalAlign" value="TOP" or "MIDDLE" or "BOTTOM" — Specifies the vertical alignment of the string
associated with the label attribute within the Function Button dimensions. Only one value is allowed; you cannot mix
vertical alignments. Default is MIDDLE.

ImageScroller

The Image Scroller Widget is a versatile Control Widget that can be used in
many ways depending upon how the attributes are set. The Image Scroller
takes either a single image or assembles an array of images into one long image
that can be scrolled through either vertically or horizontally. The scrolling
characteristics can be tuned so it appears to have inertia when released or it

can stop scrolling once the finger has been removed from the touch panel. The number of stops within the image is
determined by the numberOfSelections attribute. After scrolling and releasing the Image Scroller, it will invokes the
href function(s) with the value of the "stop" being the argument. The value of the "stop" is determined by the min, max
and the numberOfSelections attributes.

The Image Scroller can be used as a full-page image slideshow that allows you to scroll from one page to the other,
either vertically or horizontally. The Image Scroller can also be used to create a list of selectable image objects that
share a common function (or set of functions). By specifying an initial condition, that "stop" is centered within the
viewport of the Image Scroller when the page is loaded, the href function(s) are invoked and the value associated with
that "stop" is used as the argument. The Image Scroller can also be used to toggle between two sides of an image by
setting the allowWrap attribute to Toggle.

If a vertical orientation (meaning the height of the image is longer than the width) is selected, GEMstudio will not
allow the width of the Image Scroller to be adjusted less than the width of the scroller image. Changing the height of
the Image Scroller is changing the height of the visible viewport. Only the portion of the Image Scroller image that is
currently within the viewport will actually be visible. Conversely, if a horizontal orientation (meaning the width of the
image is longer than the height) is selected, GEMstudio will not allow the height of the Image Scroller to be adjusted
less than the height of the scroller image.

An optional overlayImage can be specified that sits on top of the visible viewport. Since the Image Scroller image is
underneath the overlayImage, in order to see the ImageScroller image, the overlayImage must have some transparent
regions, thus the overlayImage should be a .png or .gif with transparency. If using a vertical Image Scroller, the
overlayImage height will be the same height as the viewport, but the overlayImage width can be smaller or larger than
the viewport width. The overlayImage will be centered horizontally within the viewport of a vertical Image Scroller.
Conversely, if using a horizontal Image Scroller ,the overlayImage width will be the same width as the viewport, but
the overlayImage height can be smaller or larger than the viewport height. The overlayImage will be centered vertically
within the viewport of a horizontal Image Scroller.

Note: For best performance, the number of pixels in the height of a vertical scrollerImage should be divisible by
the number of stops as determined by numberOfSelections. For instance, if it is desired to have 8 stops along a
vertical scrollerImage, the height of the scrollerImage should be divisible by 8. The same holds true for a horizontal
scrollerImage. The number of pixels in the width of a horizontal scrollerImage should be divisible by the number of
stops as determined by numberOfSelections.

Image Scroller Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Image Scroller is to start out invisible. If
the Image Scroller starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="allowWrap" value= "No Wrap" or "Toggle" or "Wrap" — Specifies the wrapping capability of the Image
Scroller. No Wrap specifies the Image Scroller will not scroll beyond the bounds of the image. Wrap specifies the Image
Scroller will scroll beyond the bounds of the image, wrapping around to the opposite end of the image seamlessly.
Toggle is used if numberOfSelections is 2 and it is desired to have a snap-to movement between the two stops. If toggle
used, merely touching the ImageScroller will toggle between the 2 stops, no scrolling required.

Parameter="cacheImage" value="CHECKED" or "UNCHECKED" — Specifies if the Image Scroller image is loaded into
project-specific SDRAM in an uncompressed format for immediate use from any page within the project. All cached
images are loaded into SDRAM prior to the first page being displayed, so the more images that are cached, the longer
it will take for the initial page to be displayed. Page-to-page transition times can be dramatically reduced by caching
images.

Parameter="granularity" value="number" — Specifies the minimum number of pixels that must be scrolled before the
image moves. The image will move by the same number of pixels as scrolled, so this number is the smallest increment
that can be scrolled. The smaller the granularity, the smoother the scroll. 1 gives the smoothest scroll, but depending
upon the size of the Image Scroller image, could be very slow. The default is 10. The range is 1 - 255 (0x01-0xFF).

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked when the Image
Scroller has stopped scrolling and the finger is released. See Appendix B for all available functions for the Image Scroller
widget.

Parameter="incWhenScrolling" value= "Down" or "Left" or "Right" or "Up" — Specifies which scrolling direction
increments the intrinsic value of the Image Scroller. Vertical Image Scrollers should use Down or Up while Horizontal
Image Scrollers should use Left or Right.

Parameter="inertiaDuration" value="number" — Specifies the relative duration the Image Scroller will continue
to scroll once the image is no longer being touched. The absolute duration of the inertia is based upon the
inertiaDuration, the inertiaSpeed and the speed of the scroll at the time the finger was released from the touch panel.
If doing full page image transitions, it is usually best to limit the inertiaDuration to 0. If scrolling through a list of image

stops then 5 is a good place to start. If allowWrap is set to Toggle, inertiaDuration is ignored. The range is 0 - 255
(0x00-0xFF).

Parameter="inertiaSpeed" value="number" — Specifies the relative speed the Image Scroller will continue to scroll
once the image is no longer being touched. The absolute speed of the inertia is based upon the inertiaSpeed and the
speed of the scroll at the time the finger was released from the touch panel. The default is 7, which is a good place to
start. If allowWrap is set to Toggle, inertiaSpeed is ignored. The range is 0 - 255 (0x00-0xFF).

Parameter="initialCondition" value="string" or "FromInitHref" — Specifies the starting stop of the Image Scroller
when the page is loaded. The value associated with the relative location on the image selected is the argument given
to the href function(s). If "FromInitHref" is selected, the function specified by the InitHref attribute is called. Whichever
stop has the same value as the returned value from the initHref function will be centered within the Image Scroller
viewport.

Parameter="max" value="number" — The maximum value used as the argument given to the function(s) specified
in href. On horizontal Image Scrollers that have the incWhenScrolling attribute set to Right, the maximum value is
achieved when scrolled fully to the right. On horizontal Image Scrollers that have the incWhenScrolling attribute
set to Left, the maximum value is achieved when scrolled fully to the left. On vertical Image Scrollers that have the
incWhenScrolling attribute set to Down, the maximum value is achieved when scrolled fully to the bottom. On vertical
Image Scrollers that have the incWhenScrolling attribute set to Up, the maximum value is achieved when scrolled fully
to the top. The range is 1 - 65535 (0x01 - 0xFFFF).

Parameter="min" value="number" — The minimum value used as the argument given to the function(s) specified
in href. On horizontal Image Scrollers that have the incWhenScrolling attribute set to Right, the minimum value is
achieved when scrolled fully to the left. On horizontal Image Scrollers that have the incWhenScrolling attribute set
to Left, the minimum value is achieved when scrolled fully to the right. On vertical Image Scrollers that have the
incWhenScrolling attribute set to Down, the minimum value is achieved when scrolled fully to the top. On vertical
Image Scrollers that have the incWhenScrolling attribute set to Up, the minimum value is achieved when scrolled fully
to the bottom. The range is 0 - 65534 (0x00 - 0xFFFE).

Parameter="numberOfSelections" value="number" — Specifies the number of "stops" along the image. The range is 2
- 65534 (0x02 - 0xFFFE).

Parameter="orientation" value="HORIZONTAL" or "VERTICAL" — Specifies if the Image Scroller travels horizontally or
vertically. The orientation parameter will override the orientation determined by the height and width dimensions. Not
currently supported.

Parameter="sequence" value="image1;image2;image3(etc.)" — Specifies the sequence of images to scroll through,
i.e. the scroller image. See Image Formats for supported image types. Alternative to supplying one single ScrollerImage.

Optional Image Scroller Parameter Attributes:

Parameter="hrefOnHitOnly" value="CHECKED" or "UNCHECKED" — Specifies if the Image Scroller href function(s)
is launched only upon a "hit" or not. By default, hrefOnHitOnly is UNCHECKED, which means the Image Scroller will
launch its href upon loading the page. The href is also launched after a forceUpdate() call. By setting hrefOnHitOnly to
CHECKED, the href will only be launched upon the Image Scroller physically being selected or upon a forceHit() call.

Parameter="fillColor" value= See color entry conventions — Specifies the desired background fill color. See section on
colors for more information. If no fill color is specified, the default color is completely transparent.

Parameter="initHref" value="function" — Specifies the function called when the page is loaded. Use this attribute
whenever FromInitHref is used as the initialCondition. The value returned from this function call will determine which
stop will initially be displayed within the viewport. The value should be between the min and max values. See Appendix
B for all available functions.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="overlayHeight" value="number" — Specifies the height in pixels of the overlayImage. In a vertical Image
Scroller, this also specifies the height of the viewport.

Parameter="overlayImage" value="image" — Specifies the image to use as the overlay within the viewport of the
Image Scroller. In order to be useful, the overlay image must have a transparent section to allow for the viewing of the
Image Scroller image underneath it. Therefore, the overlayImage must be a.png or .gif with transparency.

Parameter="overlayWidth" value="number" — Specifies the width in pixels of the overlayImage. In a horizontal Image
Scroller, this also specifies the width of the viewport.

Parameter="scrollerImage" value="image" — Specifies the image to use as the Image Scroller. See Image Formats for
supported image types.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Only valid if FromInitHref is used as the
initialCondition. Specifies if the Image Scroller will wait for valid data before being displayed. If CHECKED, the Image
Scroller will not display until the data from the initHref function is received. If waitForInit not specified, the default is
UNCHECKED.

List

Use the List Widget to create a list of selectable text objects that share a common function (or set of
functions) and that are vertically aligned in a box. Selecting a list object highlights that object on the display
and invokes the href function(s) with the value of the list item being the argument. By specifying an initial
condition, that option is highlighted when the page is loaded, the href function(s) are invoked and the value
associated with that list object is used as the argument.

Important note: The HEIGHT and WIDTH attributes for List.class DO NOT specify the actual size of the List box drawn
on the screen. Instead, these attributes specify the size of the cell that contains the list box, and the relative position
of other objects on the screen. The Amulet OS draws the box starting from the top-left corner of the widget. The code
optimizes the width of the drawn box based on the width of the option titles and the specified font. The maximum
number of visible list items that can fit in a box based on the HEIGHT attribute determines the actual height of the
drawn box. Any remaining list items will be hidden from view, but are reachable via an arrow that allows for page
scrolling through a list. You can also scroll through the list an item at a time by keeping the pen down and moving
above or below the drawn list box.

List Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the List is to start out invisible. If the List
starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="fillColor" value= See color entry conventions — Specifies the desired list fill color. See section on colors
for more information. If no fill color is specified, the default color is the current background color. If the alpha is FF, then
the fill is fully opaque.

Parameter="font" value="font, font size" — Specifies the font used for the option names within the list box. See
Amulet GEM Font Converter for more information regarding the creation of .auf font files. Default is Bitstream Vera
Sans. Default font size is 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the desired font color. See section on colors
for more information. If no font color is specified, the default color is black.

Parameter="fontStyle" value="PLAIN" or "BOLD" or "ITALIC" — Specifies the style associated with the list box font. If
BOLD or ITALIC is not selected, PLAIN is the default fontStyle. The available font styles are:

• PLAIN - The option text uses the standard font.
• BOLD — The option text is bold. (i.e. text)
• ITALIC — The option text is italicized. (i.e. text)

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked when a list item is
hit. See Appendix B for all available functions for the List widget.

Parameter="initialCondition" value="string" or "FromInitHref" — Specifies which option string is highlighted
when the page is loaded. The value associated with the highlighted option string is the argument given to the href
function(s). If "FromInitHref" is selected, the function specified by the InitHref attribute is called. Whichever option has
the same intrinsic value as the returned value from the initHref function will be initially highlighted.

Parameter="options" value="see image below" — Specifies the list strings and their values. The value can be any
number from 0 - 65535 (0x00 - 0xFFFF) or a STRING (which must be in single quotes (' '). (See note regarding Control
Widget intrinsic values.) The first option displays at the top of the list and each subsequent option displays directly
below the previous. To add more options, hit the plus button in the lower left. See Using Amulet Formatted Text for
more formatting options.

Parameter="selectionColor" value= See color entry conventions — Specifies the color of the highlighted entry in the
list box. See section on colors for more information. If no selection color is specified, the default color is black. If the
alpha is FF, then the selectionColor is fully opaque.

Parameter="selectionFontColor" value= See color entry conventions — Specifies the color of the font within the
highlighted entry in the list box. See section on colors for more information. If no selection color is specified, the
default color is white.

Optional List Parameter Attributes:

Parameter="context" value="String"— Specifies the context of the options strings for translation. No context is not the
same as an empty context. See Context under the Localization feature for more info.

Parameter="downArrow" value="image" — Specifies the "page down arrow" image to use when the list has more
items than can be viewed. If this attribute is not present, then a default image, the Amulet logo, is used. See Image
Formats for supported image types.

Parameter="downArrowAlt" value="image" — Specifies the "page down arrow" image to use when the down arrow
is selected. If this attribute is not present, then a default image, the Amulet logo, is used. See Image Formats for
supported image types.

Parameter="hrefOnHitOnly" value="CHECKED" or "UNCHECKED" — Specifies if the list href function(s) is launched
only upon a "hit" or not. By default, hrefOnHitOnly is UNCHECKED, which means the list will launch its href upon
loading the page. The href is also launched after a forceUpdate() call. By setting hrefOnHitOnly to CHECKED, the href
will only be launched upon the list physically being selected or upon a forceHit() call.

Parameter="initHref" value="function" — Specifies the function called when the page is loaded. Use this attribute
whenever FromInitHref is used as the initialCondition. The value returned from this function call will determine which
option string starts out highlighted. The value should match the intrinsic value of one of the options strings. See
Appendix B for all available functions.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="scrollRate" value="seconds" — Specifies the rate at which the list scrolls when selecting the area directly
below or above the list box. The default scroll rate is .45 seconds. The range is 0.01 - 655.35.

Parameter="upArrow" value="image" — Specifies the "page up arrow" image to use when the list has more items
than can be viewed. If this attribute is not present, then a default image, upArrow.gif, located in Amulet/Color/
Configuration/Widgets/List/, is used. See Image Formats for supported image types.

Parameter="upArrowAlt" value="image" — Specifies the "page up arrow" image to use when the up arrow is selected.
If this attribute is not present, then a default image, upArrowAlt.gif, located in Amulet/Color/Configuration/Widgets/
List/, is used. See Image Formats for supported image types.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="borderColor" value=See color entry conventions — Specifies the color of the list box border. See section
on colors for more information. If no selection color is specified, the default color is black. If the alpha is FF, then the
border is fully opaque.

PWM (deprecated)

The following documentation is for legacy products. There are other ways of controlling
the PWM that do not use a widget. For backlight control, click here. For controlling PWM
for other uses, see the scripting help. First go to GEMstudio Pro's Help menu and select
GEMscript API. Then navigate to GEMscript API -> Hardware Access -> PWM.

A Pulse Width Modulation (PWM) widget is an invisible object that can send out a waveform
out one of two or three PWM pins on the Amulet Color Chip. The waveform period and pulse
width, in ms, can be specified as well as which PWM pin the waveform will come out on. The
waveform peak is 3.3v and the trough is at 0v. The peak and trough levels cannot be modified.

Note: The PWM widget is not required to use the PWM ports. This widget provides an IWC interface for other widgets,
but you can also use the Hardware Access methods inside of a script. To learn more, find GEMstudio Pro's Help menu
and select GEMscript API. Then navigate to GEMscript API -> Hardware Access -> PWM.

PWM Parameter Attributes:

Parameter="channel" value="0" or "1" or "2" — Specifies which PWM channel on the Amulet Color Chip the
waveform will be output. The default value is 0. Channel 0 is also the backlight dimming channel on many Amulet
boards. (The MK-070C-HP only supports channels 0 and 1, but the backlight dimming is controlled by a separate,
dedicated pwm object.)

Parameter="initialCondition" value="ON" or "OFF" or "NO CHANGE" — Specifies if the waveform is to be active
immediately upon loading the page. "No Change" means the PWM object will be created for the page, but the period
and pulse width values will not be set when the page is loaded and the PWM will not be explicitly set to either on
or off. This allows for re-instantiating a PWM object which has already been created earlier in the project without
changing its setup values and current state. The default value is ON.

Parameter="periodIn_ms" value="time in ms" — Specifies the period of the waveform in ms. Range is 0.01-2040.
(High Performance range is 0.003-129000)

Parameter="pulseWidthIn_ms" value="time in ms" — Specifies the pulse width of the waveform in ms. Range is
0-2040. (High Performance range is 0-129000)

RadioButton

A Radio Button is a labeled, usually round button used to make a single selection from several
options. To set a radio button, click on either the button or the adjacent label. All radio buttons that
have the same groupName are considered part of a radio button group. Only one radio button
within a group can be set at any one time. In contrast to a group of CheckBox widgets which must

have identical HREF parameters to function as a group, each radio button in a group can invoke its own href function
(or set of functions).

When using initHref to determine the initialCondition of the radio button group, the value of the data returned from
the initHref function must match the internalNumber of one of the radio buttons in the group. If the internalNumber is
not specified, the first radio button found in the project will be assigned internal number 1, with the internal numbers
incrementing with each subsequent radio button found which is part of the same radio button groupName.

Radio Button Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Radio Button is to start out invisible. If
the Radio Button starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="buttonAlign" value="LEFT" or "RIGHT" — Specifies the location of the Radio Button in relation to the
label text.

Parameter="font" value="font" — Specifies the font and font size used for the Radio Button label. See Amulet GEM
Font Converter for more information regarding the creation of .auf font files. Default is Bitstream Vera Sans. The default
font size for the radio button label is 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the font color used for the Radio Button label.
See section on colors for more information. If no font color is specified, the default color is black.

Parameter="fontStyle" value="BOLD" or "ITALIC" or "PLAIN" — Specifies the style associated with the Radio Button
label font. The available font styles are:

• BOLD — The option text is bold. (i.e. text)
• ITALIC — The option text is italicized. (i.e. text)
• PLAIN — The option text is the standard font. (i.e. text)

Parameter="groupName" value="text" — Specifies the Radio Button group this radio button is a part of.

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked when a Radio
Button is set. Unlike checkboxes, radio buttons within a group can call different href function(s). See Appendix B for all
available functions for the Radio Button widget.

Parameter="initialCondition" value="ON" or "OFF" or "FromInitHref" — Specifies the initial condition of the radio
button when the page is loaded. If "FromInitHref" is selected, the function specified by the InitHref attribute is called.
The returned byte value determines which single button (if any) within the group is selected; the returned value must
exactly match one of the button's internalNumber.

Parameter="label" value="text" — Specifies the name that appears to the right or left of the radio button. See Using
Amulet Formatted Text for more formatting options.

Parameter="cacheImage" value="CHECKED" or "UNCHECKED" — Specifies if all three Radio Button images are loaded
into project-specific SDRAM in an uncompressed format for immediate use from any page within the project. All cached
images are loaded into SDRAM prior to the first page being displayed, so the more images that are cached, the longer
it will take for the initial page to be displayed. Page-to-page transition times can be dramatically reduced by caching
images.

Optional Radio Button Parameter Attributes:

Parameter="context" value="String"— Specifies the context of the label string for translation. No context is not the
same as an empty context. See Context under the Localization feature for more info.

Parameter="emptyImage" value="image" — Specifies the image to use when the Radio Button is in the not set state.
If this attribute is not present, then a default image is used. See Image Formats for supported image types.

Parameter="fullImage" value="image" — Specifies the image to use when the Radio Button is in the set state. If this
attribute is not present, then a default image is used. See Image Formats for supported image types.

Parameter="hrefOnHitOnly" value="CHECKED" or "UNCHECKED" — Specifies if the Radio Button href function(s) is
launched only upon a "hit" or not. By default, hrefOnHitOnly is UNCHECKED, which means if the radio button has an
initHref function, the href of the radio button which starts out "on" is launched upon loading the page. The href is also
launched after a forceUpdate() call. By setting hrefOnHitOnly to CHECKED, the href will only be launched upon the
radio button physically being selected or upon a forceHit() call.

Parameter="initHref" value="function" — Specifies the function called when the page is loaded. Use this attribute
whenever FromInitHref is used as the initialCondition. All radio buttons within a group must have the same initHref
function. The value of the data returned from the initHref function must match the internalNumber of one of the radio
buttons in the group. If there is See Appendix B for all available functions.

Parameter="internalNumber" value="number" — Specifies the internal number of the Radio Button, used by the
OS to determine which radio button is on. Should only be used if using initHref. Each button within a radio button
group must have a unique internal number. If the value of the data returned from the initHref function matches the
internalNumber of the radio button, then that radio button starts out in the "on" position. If the internalNumber is
not specified, the first radio button found in the project will be assigned internal number 1, with the internal numbers
incrementing with each subsequent radio button found which is part of the same radio button group.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="trackingImage" value="image" — Specifies the image to use when the Radio Button is in the pen down
state. If this attribute is not present, then a default image is used. See Image Formats for supported image types.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="noSDRAM" value="CHECKED" or "UNCHECKED" — Specifies if the image(s) are NOT loaded into page-
specific SDRAM prior to drawing the object. Having a copy of images in the SDRAM speeds up drawing of this widget.
With this parameter checked, every time any part of the widget is repainted, the image will again be pulled off of the
flash, decompressed into temporary SDRAM, then blended into the frame buffer. Checking this, especially on large
images, may cause significant slowdown in GUI responsiveness, so it should be used sparingly. This has no effect if the
images are already in the global cache. Default is UNCHECKED.

Scribble (deprecated)

This widget is not fully functional on High Performance hardware. Please contact
support@amulettechnolgies.com for signature capture applications or any questions.

The Scribble Widget allows for freehand drawing on a canvas. Assuming a stylus is being
used, when the stylus sets down in the canvas of the Scribble Widget and starts moving
within the canvas, a freehand line is drawn, following the directions of the stylus. The
freehand line can be 1 to 15 pixels thick and can be any color. The Scribble canvas can have

an optional background image and border. The background image, if specified, is the first image that is shown upon
entering the page unless the initBackground attribute is set to FALSE. An InterWidget Communications method,
uploadImage(), allows for another widget/object to make the Scribble Widget transfer the raw image data to an
external processor via an xmodem protocol. The raw image is in the Amulet bitmap format.

If the Scribble canvas is saved using the IWC method saveCanvas(), the current state of the visible canvas is saved to
the serial data flash, overwriting the current image specified by the canvas attribute. If it is desired to keep an initial
image to be displayed upon page loading and you are using the saveCanvas(), you must use the background attribute to
specify a separate initial image that will not get overwritten.

Scribble Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Scribble Widget is to start out invisible. If
the Scribble Widget starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="href" value="function" — The function invoked upon receiving the uploadImage() IWC method. Only valid
function is currently UART.xmodemUploadImage().

Parameter="lineColor" value= See color entry conventions — Specifies the color of the active freehand drawing line.
See section on colors for more information. If no line color is specified, the default color is black. If the alpha is FF, then
the line color is fully opaque.

Parameter="lineWeight" value="pixels" — Defines the weight (thickness) of the active freehand drawing line in pixels.
The range is 1- 15 (0x01 - 0x0F).

Optional Scribble Parameter Attributes:

Parameter="border" value="number" — Specifies width, in pixels, of the border around the dimensions of the Scribble
Widget. Default is 0, meaning no border.

Parameter="borderColor" value=See color entry conventions — Specifies the color of the border around the
dimensions of the Scribble Widget. See section on colors for more information. If no border color is specified, the
default color is black. Only applicable if border has a value of 1 or greater. If the alpha is FF, then the border color is
fully opaque.

Parameter="background" value="image" — Specifies the optional background image used for the canvas of the
Scribble Widget. This is an optional parameter. The image does not have to be the exact same dimensions as the
Scribble Widget, but it will start drawing the background image from the topleft corner of the Scribble Widget. By
default, the background image is initially displayed upon page load. If the canvas is saved, it will replace the canvas
image and the background image will be left untouched. See Image Formats for supported image types.

Parameter="canvas" value="image" — Specifies the image used for the canvas of the Scribble Widget. The canvas can
contain a background image or it can be a completely blank image, but the dimensions of the canvas MUST be exactly
the same as the dimensions of the Scribble Widget. If the canvas is saved, the image overwrites the existing canvas
image. If the initial image is desired to be saved, use the background attribute. See Image Formats for supported image
types.

Parameter="initImage" value="Canvas" or "Background" or "Fillcolor" — Specifies if the background image is
displayed initially upon page load. If set to Canvas, the canvas image is displayed initially upon page load. Defaults to
Canvas if initImage is not specified.

Parameter="fillColor" value= See color entry conventions — Specifies the desired lineplot line color. See section on
colors for more information. If no fill color is specified, the default color is white. If backgroundImage specified, fillColor
is not used. If the alpha is FF, then the fill color is fully opaque.

Slider

The Slider Widget invokes a function (or set of functions) either upon 1) any movement
of the handle (onChange) or 2) only when the handle has been released (onPenUp). The
argument is determined by the location of the handle relative to the limits setup with
the min and max attributes. The location of the min value is determined by the minAt
attribute(left, right, top or bottom). The height and width dimensions determines

whether the slider is horizontal or vertical. The longer dimension establishes the path that the slider travels, while the
shorter dimension determines the maximum handle size. In addition, the widget creates a 3-pixel wide "channel" along
the slider path. To move the slider, touch the handle and drag it along the channel. If hrefEvent is setup as onChange,
the slider invokes the function(s) whenever the handle moves. If hrefEvent is setup as onPenUp, the slider invokes
the function(s) only upon releasing the handle. Touching anywhere on the channel causes the handle to snap to that
location and invoke the function(s) with the corresponding argument. Tick marks are optional. As an option, you can
specify the offset of the handle from the center of the channel by using the handleOffset parameter.

Slider Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Slider is to start out invisible. If the Slider
starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="channelColor" value= See color entry conventions — Specifies the color of the channel the handle slides
along. See section on colors for more information. If no channel color is specified, the default color is black.

Parameter="handleColor" value= See color entry conventions — Specifies the color inside of the handle. See section
on colors for more information. If no handle color is specified, the default color is white.

Parameter="handleFrameColor" value= See color entry conventions — Specifies the color of the handle frame. See
section on colors for more information. If no handle frame color is specified, the default color is black.

Parameter="handleTrackingColor" value= See color entry conventions — Specifies the color of the handle when being
touched. See section on colors for more information. If no handle frame color is specified, the default color is black.

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked upon the event
specified in hrefEvent. See Appendix B for all available functions for the Slider widget.

Parameter="hrefEvent" value="On Change" or "On Release" — The event which triggers the launching of the href
function. If set to On Change, the slider will launch the function call whenever the handle is moved. If set to On
Release, the slider will only launch the function call upon the releasing of the slider handle. If hrefEvent is not specified,
the default is On Change.

Parameter="initialCondition" value="number" or "FromInitHref" — Specifies handle position when the page is
loaded. The position value becomes the argument given to the href function(s). If FromInitHref is selected, the function
specified by the InitHref attribute is called. The returned value determines the handle position. [The range is 0 - 65535
(0x00 - 0xFFFF).]

Parameter="max" value="number" — The maximum value used as the argument given to the function(s) specified
in href. Maximum value is achieved when handle is full-right on a horizontal slider, or full-top on a vertical slider. The
range is 1 - 65535 (0x01 - 0xFFFF).

Parameter="min" value="number" — The minimum value used as the argument given to the function(s) specified in
href. Minimum value is achieved when handle is full-left on a horizontal slider, or full-bottom on a vertical slider. The
range is 0 - 65534 (0x00 - 0xFFFE).

Parameter="minAt" value=""LEFT" or "RIGHT" or "TOP" or "BOTTOM"" — Determines where the minimum value
of the slider is located. As the handle sweeps from the minAt location, the value increases until the maximum value is
reached at the opposite extreme of the minAt location. Default values are LEFT for horizontal sliders and BOTTOM for
vertical sliders. The options are:

• LEFT — The slider value increases from left to right. (horizontal slider only)
• RIGHT — The slider value increases from right to left. (horizontal slider only)
• TOP — The slider value increases from top to bottom. (vertical slider only)
• BOTTOM — The slider value increases from bottom to top. (vertical slider only)

Parameter="tickColor" value= See color entry conventions — Specifies the color of the ticks drawn on the channel.
See section on colors for more information. If no tick color is specified, the default color is black. If the alpha is FF, then
the tick color is fully opaque.

Parameter="tickCount" value="number" — The total number of tick marks along the slider channel. If 0, no tick marks
are visible. If tickCount is not given, the default is 0. The range is 0 - 255 (0x00 - 0xFF).

Optional Slider Parameter Attributes:

Parameter="handleOffset" value="number" — Specifies the number of pixels from the center of the channel the
handle is located. If a vertical slider, positive numbers shift the handle to the right and negative numbers shift it to the
left. If a horizontal slider, positive numbers shift the handle to the bottom and negative numbers shift it to the top. [The
range is -100 through 100]

Parameter="handleThickness" value="number" — The width (in pixels) of the handle if a horizontal slider, or the
height of the handle if a vertical slider. If handleThickness is not given, the default is 11 pixels. The range is 4 - 255 (0x04
- 0xFF).

Parameter="hrefOnHitOnly" value="CHECKED" or "UNCHECKED" — Specifies if the slider href function(s) is launched
only upon a "hit" or not. By default, hrefOnHitOnly is UNCHECKED, which means the slider will launch its href upon
loading the page. The href is also launched after a forceUpdate() call. By setting hrefOnHitOnly to CHECKED, the href
will only be launched upon the slider physically being selected or upon a forceHit() call.

Parameter="initHref" value="function" — Only valid if FromInitHref is used as the initialCondition. Specifies the
function called when the page is loaded. The value returned from this function call will be used as the initial condition
of the Slider handle. See Appendix B for all available functions.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="orientation" value="HORIZONTAL" or "VERTICAL" — Specifies if the handle is to travel horizontally or
vertically. The orientation parameter will override the orientation determined by the height and width dimensions.

Parameter="tickLength" value="number" — The length (size) of each tick mark, in pixels. The range is 1 - 255 (0x01 -
0xFF). If tickLength is not given, the default is 9 pixels.

Parameter="tickPosition" value="CENTER" or "TOP" or "BOTTOM" or "LEFT" or "RIGHT" — The position of the tick
marks in relation to the channel. . The range for a horizontal slider is CENTER, TOP or BOTTOM. The range for a vertical
slider is CENTER, LEFT or RIGHT. If tickPosition is not given, the default is CENTER (inside the channel).

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first initHref function call (specified in seconds, with a single floating-point number). The range is 0.00 -
655.35. If this number is not specified, then the delay time defaults to 0.01 (immediately upon page load).

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Only valid if FromInitHref is used as the
initialCondition. Specifies if the Slider handle will wait for valid data before being displayed on the channel. If CHECKED,
the Slider handle will not display until the data from the initHref function is received. If UNCHECKED, or the attribute is
not present, the Slider handle momentarily starts at the minAt location until the initHref function receives its data. This
is useful when the initHref contains a UART or USB method and may not return immediately.

Timer

Timers are invisible control widgets that call their function(s) based upon a timer event instead of a user "hit". Upon
page load, timers will start decrementing their startDelay value every 10ms and when it reaches 0 the function(s) in
href will be launched. After startDelay has hit 0 and the href function(s) have been launched, the period value will
begin decrementing every 10ms and when it reaches 0 the function(s) in href will be launched. After period has hit 0,
the original value of period will be reloaded and then immediately start decrementing again. Timers will continue to
launch every period unless the timer has been disabled or if the period is set to 0.

Timers can also be used as a watchdog timer as far as communication and touch are concerned. To use the Timer
as a watchdog timer, use the optional parameter timeout. When used as a watchdog, the timer will launch its href
function(s) after the time specified in the period parameter depending upon the value specified by the timeout
parameter. If No_Comm is selected, the function(s) will launch if no serial communication is detected on any of the
UART or USB ports. If No_Touch is selected, the function(s) will launch if no touch is detected by the module's touch
panel controller. In both conditions, the timer is treated like a watchdog timer. With No_Comm selected, any incoming
byte on any UART or USB port will reset the timer back to the initial value specified in the period. With No_Touch
selected, touching anywhere on the touch panel will reset the timer back to the initial value specified in the period.

To make a one-shot timer, set period to 0 and set startDelay to the amount of time to delay from page load.

Timer Parameter Attributes:

Parameter="href" value="function(s)" — The function (or multiple/sequenced functions) invoked after the Timer's
startDelay times out (and then subsequently after the period times out). See Appendix B for all available functions for
the href event.

Parameter="period" value="number" — The period specifies the frequency that the href function is called (specified
in seconds, with a single floating-point number). The range is 0.00 - 655.35. 0.00 means update never. If the period is
0.00, then the href function(s) is launched after the delay time specified by startDelay and will not get launched again,
effectively making a one-shot timer.

Optional Timer Parameter Attributes:

Parameter="startDelay" value="number" — The startDelay specifies the delay from when the page is loaded until
the href function is called (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If
startDelay is set to 0.00, the timer will not run, and the href function(s) will not be launched until one of the following
IWC's is called: reset(), setStartDelay_in_10ms(x), setStartDelay_in_s(f), setPeriod_in_10ms(x), or setPeriod_in_s(f).
Calling the forceHit() IWC will immediately launch the href function(s) but it will not start up the timer. If startDelay is
not added, the time specified in the period will also be used as the delay.

Parameter="timeout" value="No_Comm" or "No_Touch" — The timeout value specifies whether the timer object
will launch its function(s) based upon either losing communication or lack of touch over a period of time specified in
the period attribute. Only one selection can be chosen per Timer object. If No_Comm is selected, the function(s) will
launch if no serial communication is detected on any of the UART or USB ports. If No_Touch is selected, the function(s)
will launch if no touch is detected by the module's touch panel controller. In both conditions, the timer is treated like

a watchdog timer. With No_Comm selected, any incoming byte on any UART or USB port will reset the timer back to
the initial value specified in the period. With No_Touch selected, touching anywhere on the touch panel will reset the
timer back to the initial value specified in the period.

Touch Area

Touch Areas are rectangular touchable regions that can be placed anywhere on the display. Touch
Areas are not visible when not touched, and have no visual feedback by default when touched,
although they can be set up to shade the area underneath the Touch Area with a transparent color,
or invert the colors in the area underneath the Touch Area.
Instead of a single HREF that is launched upon release, like most other control widgets, the Touch

Area has a number of events that can all have their own function call(s) associated with them. There are a number of
events that are valid for all touch screens, like onRelease, onSlideOff, onSlideOn, onTap, onDoubleTap, and onTouch.
There are also many gesture events that are only valid on certain capacitive touch panels like onPinch, onZoom,
onSwipeEast, onMultiTouchSwipeEast, etc... Only the optional events that are applicable for the currently selected
touch panel will show up in the Add/Remove Parameter dialog box.
Like Function Buttons, Touch Areas can also be set up to auto-repeat. When pressed, an auto-repeat Touch Area delays
a user-defined amount of time, then invokes a function (or set of functions) at a user-defined frequency while the
Touch Area is still being pressed. See onAutoRepeat, repeatDelay and repeatRate for more information.

Touch Area Parameter Attributes:

Parameter="onRelease" value="function(s)" — The function (or multiple/sequenced functions) invoked after the
Touch Area is touched and then released while still within the Touch Area boundaries. See Appendix B for all available
functions for the onRelease event.

Parameter="visualFeedback" value="None" or "Alpha" or "Invert" — Specifies the visual action of the Touch
Area while being touched. "None" causes no visual change on the display. "Alpha" shades the area underneath the
Touch Area with a transparent color defined by alphaColor. "Invert" causes the colors in the area underneath the Touch
Area to become inverted. Sliding off or releasing the Touch Area returns the area underneath the Touch Area back to its
original state. "None" is the default.

Optional Touch Area Parameter Attributes:

Parameter="alphaColor" value= See color entry conventions — If visualFeedback equals "Alpha", this attribute
specifies the alpha color mask used to notify the user the Touch Area has been depressed. See section on colors for
more information. If no alphaColor is specified, the default color is a transparent gray. If the color specified does not
have an alpha component, then it will be completely opaque, which will result in a colored rectangle appearing in place
of the Touch Area while it is touched.

Parameter="gestureDelay" value="number" — Time to delay from when Touch Area initially senses a gesture until
it starts to act upon the gesture (i.e. launch the function(s) tied to the gesture event). This delay helps filter out false
gestures prior to sensing the true gesture being performed. Specified in seconds, with a single floating-point number. A
gestureDelay of 0.00 results in the gesture never being seen. The range is 0.00 - 655.35. Default is 0.05 if the parameter
is not specified.

Parameter="gestureRate" value="number" — The gesture function call frequency while Touch Area is sensing a
gesture, after the initial delay determined by gestureDelay. This rate helps throttle the frequency of gesture functions
that will be launched. If a gesture is not being sensed, this gestureRate has no effect. Specified in seconds, with a single
floating-point number. A gestureRate of 0.00 results in the gesture function(s) being launched once after the given
gestureDelay time and then not repeated. The range is 0.00 - 655.35. Default is 0.25 if the parameter is not specified.

Parameter="onAutoRepeat" value="function(s)" — The function (or multiple/sequenced functions) invoked after the
Touch Area is touched for at least the time specified in repeatDelay. The function(s) will be launched at the given
update rate specified by repeatRate as long as the Touch Area remains touched. See Appendix B for all available
functions for the onAutoRepeat event.

Parameter="onDoubleTap" value="function(s)" — the function (or multiple/sequenced functions) invoked after the
Touch Area is tapped twice in a row. To be considered a Double Tap, the Touch Area needs to be touched for 150ms
or less twice in a row with the time between the two taps at 75ms or less. It is possible to adjust the time required
to be considered a Double Tap by contacting Amulet Technologies. See Appendix B for all available functions for the
onDoubleTap event.

Parameter="onJogBackward" value="function(s)" — The function (or multiple/sequenced functions) invoked
after the Touch Area senses a Jog Backward gesture. To be considered a Jog Backward gesture, the Touch Area needs
to be touched by a single finger and then rotated in a counter-clockwise manner. As long as the finger stays rotating
counter-clockwise, the Jog Backward gesture will be sensed. Use gestureRate to specify the maximum rate the
onJogBackward function(s) will be called. See Appendix B for all available functions for the onJogBackward event. (Jog
Backward Gesture only available on select capacitive touch panels)

Parameter="onJogForward" value="function(s)" — The function (or multiple/sequenced functions) invoked after the
Touch Area senses a Jog Forward gesture. To be considered a Jog Forward gesture, the Touch Area needs to be touched
by a single finger and then rotated in a clockwise manner. As long as the finger stays rotating clockwise, the Jog
Forward gesture will be sensed. Use gestureRate to specify the maximum rate the onJogForward function(s) will be
called. See Appendix B for all available functions for the onJogForward event. (Jog Forward Gesture only available on
select capacitive touch panels)

Parameter="onMultiTouchDoubleTap" value="function(s)" — the function (or multiple/sequenced functions) invoked
after the Touch Area is tapped twice in a row using two or more fingers. To be considered a Multi Touch Double Tap,
the Touch Area needs to be touched by two or more fingers for 150ms or less twice in a row with the time between
the two taps at 75ms or less. It is possible to adjust the time required to be considered a multi touch double tap by
contacting Amulet Technologies. See Appendix B for all available functions for the onMultiTouchDoubleTap event.
(Multi Touch Double Tap Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchSwipeEast" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe East gesture. To be considered a Multi Touch Swipe
East gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the right. As long as the
fingers continue swiping to the right, the Multi Touch Swipe East gesture will be sensed. Use gestureRate to specify
the maximum rate the onMultiTouchSwipeEast function(s) will be called. See Appendix B for all available functions for
the onMultiTouchSwipeEast event. (Multi Touch Swipe East Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchSwipeNorth" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe North gesture. To be considered a Multi Touch Swipe
North gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the top. As long as the
fingers continue swiping to the top, the Multi Touch Swipe North gesture will be sensed. Use gestureRate to specify
the maximum rate the onMultiTouchSwipeNorth function(s) will be called. See Appendix B for all available functions for
the onMultiTouchSwipeNorth event. (Multi Touch Swipe North Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchSwipeNorthEast" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe North East gesture. To be considered a Multi Touch Swipe
North East gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the top and the
right. As long as the fingers continue swiping to the top and the right, the Multi Touch Swipe North East gesture will be
sensed. Use gestureRate to specify the maximum rate the onMultiTouchSwipeNorthEast function(s) will be called. See
Appendix B for all available functions for the onMultiTouchSwipeNorthEast event. (Multi Touch Swipe North East
Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchSwipeNorthWest" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe North West gesture. To be considered a Multi Touch Swipe
North West gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the top and the
left. As long as the fingers continue swiping to the top and the left, the Multi Touch Swipe North West gesture will be
sensed. Use gestureRate to specify the maximum rate the onMultiTouchSwipeNorthWest function(s) will be called. See
Appendix B for all available functions for the onMultiTouchSwipeNorthWest event. (Multi Touch Swipe North West
Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchSwipeSouth" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe South gesture. To be considered a Multi Touch Swipe
South gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the bottom. As long
as the fingers continue swiping to the bottom, the Multi Touch Swipe South gesture will be sensed. Use gestureRate
to specify the maximum rate the onMultiTouchSwipeSouth function(s) will be called. See Appendix B for all available
functions for the onMultiTouchSwipeSouth event. (Multi Touch Swipe South Gesture only available on select capacitive
touch panels)

Parameter="onMultiTouchSwipeSouthEast" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe South East gesture. To be considered a Multi Touch Swipe
South East gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the bottom and
the right. As long as the fingers continue swiping to the bottom and the right, the Multi Touch Swipe South East gesture
will be sensed. Use gestureRate to specify the maximum rate the onMultiTouchSwipeSouthEast function(s) will be
called. See Appendix B for all available functions for the onMultiTouchSwipeSouthEast event. (Multi Touch Swipe
South East Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchSwipeSouthWest" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe South West gesture. To be considered a Multi Touch Swipe
South West gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the bottom and
the left. As long as the fingers continue swiping to the bottom and the left, the Multi Touch Swipe South West gesture
will be sensed. Use gestureRate to specify the maximum rate the onMultiTouchSwipeSouthWest function(s) will be
called. See Appendix B for all available functions for the onMultiTouchSwipeSouthWest event. (Multi Touch Swipe
South West Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchSwipeWest" value="function(s)" — The function (or multiple/sequenced functions)
invoked after the Touch Area senses a Multi Touch Swipe West gesture. To be considered a Multi Touch Swipe
West gesture, the Touch Area needs to be touched by two or more fingers and then swiped to the left. As long as the
fingers continue swiping to the left, the Multi Touch Swipe West gesture will be sensed. Use gestureRate to specify
the maximum rate the onMultiTouchSwipeWest function(s) will be called. See Appendix B for all available functions for
the onMultiTouchSwipeWest event. (Multi Touch Swipe West Gesture only available on select capacitive touch panels)

Parameter="onMultiTouchTap" value="function(s)" — the function (or multiple/sequenced functions) invoked
after the Touch Area is tapped using two or more fingers. To be considered a Multi Touch Tap, the Touch Area needs
to be touched by two or more fingers for 150ms or less. It is possible to adjust the time required to be considered a
multi touch tap by contacting Amulet Technologies. See Appendix B for all available functions for the onMultiTouchTap
event. (Multi Touch Tap Gesture only available on select capacitive touch panels)

Parameter="onPinch" value="function(s)" — the function (or multiple/sequenced functions) invoked after the Touch
Area senses the Pinch gesture. The Pinch gesture is sensed when the Touch Area is touched by two fingers that are
apart and then pinched in together. As long as the two fingers are pinching in, the Pinch gesture will be sensed. See
Appendix B for all available functions for the onPinch event. (Pinch Gesture only available on select capacitive touch
panels)

Parameter="onSlideOff" value="function(s)" — the function (or multiple/sequenced functions) invoked after touching
the Touch Area then sliding off the Touch Area while still making contact with the touch panel. The Slide Off event will
only launch once for every Slide Off occurrence. It is possible to have multiple Slide Off occurrences if the finger slides
back on the Touch Area and then off again. See Appendix B for all available functions for the onSlideOff event.

Parameter="onSlideOn" value="function(s)" — the function (or multiple/sequenced functions) invoked after touching
the Touch Area then sliding off and then sliding back on the Touch Area while maintaining contact with the touch
panel. The Slide On event will only launch once for every Slide On occurrence. It is possible to have multiple Slide
On occurrences if the finger slides back off the Touch Area and then back on again. See Appendix B for all available
functions for the onSlideOn event.

Parameter="onSwipeEast" value="function(s)" — The function (or multiple/sequenced functions) invoked after the
Touch Area senses a Swipe East gesture. To be considered a Swipe East gesture, the Touch Area needs to be touched by

one finger and then swiped to the right. As long as the finger continues swiping to the right, the Swipe East gesture will
be sensed. Use gestureRate to specify the maximum rate the onSwipeEast function(s) will be called. See Appendix B for
all available functions for the onSwipeEast event. (Swipe East Gesture only available on select capacitive touch panels)

Parameter="onSwipeNorth" value="function(s)" — The function (or multiple/sequenced functions) invoked after the
Touch Area senses a Swipe North gesture. To be considered a Swipe North gesture, the Touch Area needs to be touched
by one finger and then swiped to the top. As long as the finger continues swiping to the top, the Swipe North gesture
will be sensed. Use gestureRate to specify the maximum rate the onSwipeNorth function(s) will be called. See Appendix
B for all available functions for the onSwipeNorth event. (Swipe North Gesture only available on select capacitive touch
panels)

Parameter="onSwipeNorthEast" value="function(s)" — The function (or multiple/sequenced functions) invoked
after the Touch Area senses a Swipe North East gesture. To be considered a Swipe North East gesture, the Touch Area
needs to be touched by one finger and then swiped to the top and the right. As long as the finger continues swiping to
the top and the right, the Swipe North East gesture will be sensed. Use gestureRate to specify the maximum rate the
onSwipeNorthEast function(s) will be called. See Appendix B for all available functions for the onSwipeNorthEast event.
(Swipe North East Gesture only available on select capacitive touch panels)

Parameter="onSwipeNorthWest" value="function(s)" — The function (or multiple/sequenced functions) invoked
after the Touch Area senses a Swipe North West gesture. To be considered a Swipe North West gesture, the
Touch Area needs to be touched by one finger and then swiped to the top and the left. As long as the finger
continues swiping to the top and the left, the Swipe North West gesture will be sensed. Use gestureRate to specify
the maximum rate the onSwipeNorthWest function(s) will be called. See Appendix B for all available functions for the
onSwipeNorthWest event. (Swipe North West Gesture only available on select capacitive touch panels)

Parameter="onSwipeSouth" value="function(s)" — The function (or multiple/sequenced functions) invoked after the
Touch Area senses a Swipe South gesture. To be considered a Swipe South gesture, the Touch Area needs to be touched
by one finger and then swiped to the bottom. As long as the finger continues swiping to the bottom, the Swipe South
gesture will be sensed. Use gestureRate to specify the maximum rate the onSwipeSouth function(s) will be called. See
Appendix B for all available functions for the onSwipeSouth event. (Swipe South Gesture only available on select
capacitive touch panels)

Parameter="onSwipeSouthEast" value="function(s)" — The function (or multiple/sequenced functions) invoked
after the Touch Area senses a Swipe South East gesture. To be considered a Swipe South East gesture, the Touch
Area needs to be touched by one finger and then swiped to the bottom and the right. As long as the finger continues
swiping to the bottom and the right, the Swipe South East gesture will be sensed. Use gestureRate to specify
the maximum rate the onSwipeSouthEast function(s) will be called. See Appendix B for all available functions for the
onSwipeSouthEast event. (Swipe South East Gesture only available on select capacitive touch panels)

Parameter="onSwipeSouthWest" value="function(s)" — The function (or multiple/sequenced functions) invoked
after the Touch Area senses a Swipe South West gesture. To be considered a Swipe South West gesture, the Touch
Area needs to be touched by one finger and then swiped to the bottom and the left. As long as the finger continues
swiping to the bottom and the left, the Swipe South West gesture will be sensed. Use gestureRate to specify
the maximum rate the onSwipeSouthWest function(s) will be called. See Appendix B for all available functions for the
onSwipeSouthWest event. (Swipe South West Gesture only available on select capacitive touch panels)

Parameter="onSwipeWest" value="function(s)" — The function (or multiple/sequenced functions) invoked after the
Touch Area senses a Swipe West gesture. To be considered a Swipe West gesture, the Touch Area needs to be touched
by one finger and then swiped to the left. As long as the finger continues swiping to the left, the Swipe West gesture
will be sensed. Use gestureRate to specify the maximum rate the onSwipeWest function(s) will be called. See Appendix
B for all available functions for the onSwipeWest event. (Swipe West Gesture only available on select capacitive touch
panels)

Parameter="onTap" value="function(s)" — the function (or multiple/sequenced functions) invoked after the Touch
Area is tapped using one finger. To be considered a Tap, the Touch Area needs to be touched by one finger for 150ms or
less. It is possible to adjust the time required to be considered a tap by contacting Amulet Technologies. See Appendix
B for all available functions for the onTap event.

Parameter="onTouch" value="function(s)" — the function (or multiple/sequenced functions) invoked after the Touch
Area is initially touched. The onTouch function(s) are called once immediately upon touching the Touch Area. See
Appendix B for all available functions for the onTouch event.

Parameter="onZoom" value="function(s)" — the function (or multiple/sequenced functions) invoked after the Touch
Area senses the Zoom gesture. The Zoom gesture is sensed when the Touch Area is touched by two fingers that are
slightly apart and then separated further apart from each other. As long as the two fingers are moving away from
each other, the Zoom gesture will be sensed. See Appendix B for all available functions for the onZoom event. (Zoom
Gesture only available on select capacitive touch panels)

Parameter="repeatDelay" value="number" — Time to delay from when Touch Area is initially pressed until it starts to
auto-repeat the onAutoRepeat function(s). Specified in seconds, with a single floating-point number. A repeatDelay of
0.00 results in the onAutoRepeat never firing. The range is 0.00 - 655.35.

Parameter="repeatRate" value="number" — The onAutoRepeat function(s) call frequency while Touch Area is being
pressed, after the initial delay determined by repeatDelay. Specified in seconds, with a single floating-point number. A
repeatRate of 0.00 results in the onAutoRepeat function(s) being launched only once after the given repeatDelay time
and then not repeated. The range is 0.00 - 655.35.

View Widgets

View Widgets enable the user to visualize text, numerical values, or arrays of values.

BarGraph

A Bar Graph Widget is a live bargraph that represents the numerical value returned from a
function call. The Bar Graph moves from left-to-right, right-to-left, bottom-to-top, or
top-to-bottom.

Bargraph Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Bar Graph is to start out invisible. If the
Bar Graph starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="fillColor" value= See color entry conventions — Specifies the desired bargraph fill color. See section on
colors for more information. If no fill color is specified, the default color is black. If the alpha is FF, then the fill color is
fully opaque.

Parameter="borderColor" value= See color entry conventions — Specifies the desired bargraph border color. See
section on colors for more information. If no border color is specified, the default color is the fillColor color. If the alpha
is FF, then the border color is fully opaque.

Parameter="backgroundColor" value= See color entry conventions — Specifies the desired
bargraph background color. See section on colors for more information. If no background color is specified, the default
color is white. if the alpha is FF, then the background color is fully opaque.

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all available
functions for the Bargraph Widget. The function is called at an update rate specified by the updateFreq attribute.

Parameter="min" value="number" — Minimum value returned from the href function; must be less than max. If the
function returns a byte, the range is 0 - 254 (0x00 - 0xFE). If the function returns a word, the range is 0 - 65534 (0x00 -
0xFFFE).

Parameter="max" value="number" — Maximum value returned from the href function; must be greater than min.
If the function returns a byte, the range is 1 - 255 (0x01 - 0xFF). If the function returns a word, the range is 1 - 65535
(0x01 - 0xFFFF).

Parameter="sweepFrom" value="LEFT" or "RIGHT" or "TOP" or "BOTTOM" — Determines where to begin drawing the
bargraph. The options are:

• LEFT — The bargraph is drawn from left-to-right. (default)
• RIGHT — The bargraph is drawn from right-to-left.
• TOP — The bargraph is drawn from top-to-bottom.
• BOTTOM — The bargraph is drawn from bottom-to-top

Parameter="updateFreq" value ="number" — The number specifies the href function call frequency (specified in
seconds, with a single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — The number specifies the delay time from when the page is loaded
until the first href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If
this number is not specified, then the delay time defaults to updateFreq number.

Optional Bar Graph Parameter Attributes:

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Specifies if the Bar Graph will wait for valid
data before being displayed. If CHECKED, the Bar Graph will not display until the data from the href function is received.
If UNCHECKED, or the attribute is not present, the Bar Graph momentarily starts at the min location until the href
function receives its data. If waitForInit not specified, the default is UNCHECKED. This is useful when the Href contains a
UART or USB method and may not return immediately.

Dynamic Image (deprecated)

The following documentation is for legacy products, and does not work for High
Performance hardware. There are other, faster ways of loading user images at runtime with
current hardware. See jpegOverride parameter of the image object.

The Dynamic Image Widget is an uncompressed image which provides a space holder to display
images which can be loaded serially at runtime. This is particularly useful for end-user uploaded
images which do not change frequently. For images that change frequently or which are not
required to persist between power cycles, a host processor can draw directly to the Frame Buffer.

The size of the image to be uploaded must be the exact same size as the canvas image. Images are
uploaded via xmodem crc protocol. The image must be in either the Amulet bitmap or JPEG
formats. The first 24-bytes of any image being uploaded, known as the header bytes, must be the

same as the header bytes of the canvas image. The first six bytes are the flash header bytes and the next five bytes are
the image header bytes. These first 24 bytes can be found in the .inc file, which will be generated in the MAP folder of
your project after saving or programming your project.

To correctly use the Dynamic Image Widget, the IWC method, loadFlash(return), needs to be used. Once that method is
invoked, the Amulet will start sending 'C's, ready to receive the incoming xmodem data from an external source. Once
the image is fully sent, and the xmodem protocol is complete, meaning the external source sent an EOT(0x04) and the
Amulet answered back with an ACK(0x06), the external source needs to send an ETB(0x17), which will take the Amulet
out of the xmodem mode and return to the active page. The Dynamic Image Widget must then be sent a reset IWC
method. The easiest way to accomplish this all is via a META REFRESH using a trigger. The META would look something
like:

<META HTTP-EQUIV="REFRESH"
CONTENT="0,0.25;ONVAR=UART.byte(5).value();TRIGGER=0xFF;URL=loadFlash(return),document.Dyn1.reset()">

In the above case, when the external processor is ready to send over a new image, it would respond back to the
UART.byte(5).value() request with a value of 0xFF, which would cause the Amulet to enter the loadFlash routine, which
means C's will start coming from the Amulet. After the image has been uploaded to the Amulet and the external
processor sends the ETB(0x17), the Amulet returns to the active page and then performs a reset condition to the
Dynamic Image Widget called Dyn1, which forces a repaint using the new image which was just uploaded.

Dynamic Image Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Dynamic Image is to start out invisible.
If the Dynamic Image starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="canvas" value="image" — Specifies the image used for the canvas of the Dynamic Image Widget.
This is a required parameter. The canvas can contain a default image or it can be a completely blank image, but the
dimensions of the canvas MUST be exactly the same as the dimensions of the Dynamic Image Widget. See Image
Formats for supported image types.

ImageBar

The Image Bar Widget uses two images (empty bar and full bar) to create a custom "bargraph". A
byte (or word) returned from a function call is the widget input. Based upon the value of the byte
(or word) returned, a percentage of the empty bar and a percentage of the full bar are displayed.
For further customization, the wipe between empty and full can be from left-to-right, right-to-left,
bottom-to-top, or top-to-bottom. When the minimum value or less is returned, the entire "empty"
image is displayed. When the maximum value or greater is returned, the entire "full" image is
displayed.

Image Bar Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Image Bar is to start out invisible. If the
Image Bar starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="empty" value="image" — Image used when minimum value is returned from the href function. See Image
Formats for supported image types.

Parameter="full" value="image" — Image used when maximum value is returned from the href function. See Image
Formats for supported image types.

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all available
functions for the Image Bar widget. The function is called at an update rate specified by the updateRate attribute.

Parameter="max" value="number" — Maximum value returned from the href function; must be greater than min.
If the function returns a byte, the range is 1 - 255 (0x01 - 0xFF). If the function returns a word, the range is 1 - 65535
(0x01 - 0xFFFF).

Parameter="min" value="number" — Minimum value returned from the href function; must be less than max. If the
function returns a byte, the range is 0 - 254 (0x00 - 0xFE). If the function returns a word, the range is 0 - 65534 (0x00 -
0xFFFE).

Parameter="sweepFrom" value="LEFT" or "RIGHT" or "TOP" or "BOTTOM" — Determines where (within the image
bar cell) to begin the image transition. The options are:

• LEFT — The "full" and "empty" images transition from left-to-right.
• RIGHT — The "full" and "empty" images transition from right-to-left.
• TOP — The "full" and "empty" images transition from top-to-bottom.
• BOTTOM — The "full" and "empty" images transition from bottom-to-top.

Parameter="updateFreq" value ="number" — Specifies the href function call frequency (specified in seconds, with a
single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — Specifies the delay time from when the page is loaded until the first
href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If this number
is not specified, then the delay time defaults to the updateFreq number.

Optional Image Bar Parameter Attributes:

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Only valid if href is used. Specifies if the Image Bar
will wait for valid data before displaying an image on the channel. If CHECKED, the Image Bar will not display until the
data from the href function is received. If UNCHECKED, or the attribute is not present, the Image Bar momentarily
starts at the min location until the href function receives its data. If waitForInit not specified, the default is
UNCHECKED. This is useful when the Href contains a UART or USB method and may not return immediately.

ImageSequence

The Image Sequence Widget is similar to an animated image. However, instead of being linked to a
timer event, the transition between images is linked to a byte (or word) returned from an href
function call. The displayed image is determined by scaling the value returned from the href
function call. The following algorithm is used:

Image # = {(total # of images) * (value of byte from function - min)}/ (max - min + 1)

The resultant number, truncated to an integer, is the number of the image to display, where the first image in the
sequence is numbered 0. For all images to be displayable, (max-min+1) must be greater than or equal to the number
of images. Also, if the href function returns a value less than the specified min, the value will be treated as equal to the
specified min. Likewise, if the href function returns a value greater than the specified max, the value will be treated as
equal to the specified max.
Consider the following example.

A sequence of 7 separate images: Image0 = , ... Image6 = .

An href function that returns a byte that ranges between a min of 23 and a max of 232. Although the value returned by
the href function may vary with time, only one of the seven images will be displayed at any one time. Table 1, below,
maps each value range to the image that will be displayed. Note that values below 23 are treated like a 23, and values
above 232 are treated like a 232.

 7*(203-23)/((232-23)+1) = 6
 7*(173-23)/((232-23)+1) = 5
 7*(143-23)/((232-23)+1) = 4
 7*(113-23)/((232-23)+1) = 3
 7*(83-23)/((232-23)+1) = 2
 7*(53-23)/((232-23)+1) = 1
 7*(23-23)/((232-23)+1) = 0

Table 1. Image Sequence Example

Image Sequence Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Image Sequence is to start out invisible.
If the Image Sequence starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="cacheImage" value="CHECKED" or "UNCHECKED" — Specifies if the entire sequence of images are loaded
into project-specific SDRAM in an uncompressed format for immediate use from any page within the project. All cached
images are loaded into SDRAM prior to the first page being displayed, so the more images that are cached, the longer
it will take for the initial page to be displayed. Page-to-page transition times can be dramatically reduced by caching
images.

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all
available functions for the Image Sequence widget. The function is called at an update rate specified by the updateRate
attribute.

Parameter="max" value="number" — Maximum value returned from the href function; must be greater than min.
If the function returns a byte, the range is 1 - 255 (0x01 - 0xFF). If the function returns a word, the range is 1 - 65535
(0x01 - 0xFFFF).

Parameter="min" value="number" — Minimum value returned from the href function; must be less than max. If the
function returns a byte, the range is 0 - 254 (0x00 - 0xFE). If the function returns a word, the range is 0 - 65534 (0x00 -
0xFFFE).

Parameter="sequence" value="image1;image2;image3(etc.)" — List of images used. See Image Formats for supported
image types. The range is 1 - 65535 images.

Parameter="updateFreq" value ="number" — Specifies the href function call frequency (specified in seconds, with a
single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — Specifies the delay time from when the page is loaded until the first
href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If this number
is not specified, then the delay time defaults to the number in updateFreq.

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Specifies if the Image Sequence will wait for valid
data before any image will be displayed on the LCD. If CHECKED, the Image Sequence will not display any image
until the first packet of data is received. If UNCHECKED, or the attribute is not present, the Image Sequence starts

out displaying the first image until the first packet of data is received. This is useful when the Href contains a UART or
USB method and may not return immediately.

Optional Image Sequence Parameter Attributes:

Parameter="loadImmediately" value="CHECKED" or "UNCHECKED" — Specifies if the images are loaded immediatly
into the SDRAM on page load. This parameter is only applicable if the noSDRAM and the cacheImage parameters are
UNCHECKED. If loadImmediately is CHECKED, then all the images in the Image Sequence will be loaded in the sdram
for faster use after page load. However, this will delay the page load. If loadImmediately is UNCHECKED, then, the
images won't be loaded in the sdram up front, but will do so as each image is requested, as long as noSDRAM is also
UNCHECKED. Once each image has been displayed once, the image switching performance will be the same. The
default for loadImmediately is UNCHECKED. Use this when the timing between images is critical, but you dont have the
SDRAM to globally allocate cached images.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="noSDRAM" value="CHECKED" or "UNCHECKED" — Specifies if the image(s) are NOT loaded into page-
specific SDRAM prior to drawing the object. Having a copy of images in the SDRAM speeds up drawing of this widget.
With this parameter checked, every time any part of the widget is repainted, the image will again be pulled off of the
flash, decompressed into temporary SDRAM, then blended into the frame buffer. Checking this, especially on large
images, may cause significant slowdown in GUI responsiveness, so it should be used sparingly. This has no effect if the
images are already in the global cache. Default is UNCHECKED.

Line Graph

The Line Graph Widget is a static 2-dimensional line graph that represents an array of
bytes (or words) returned from an href function call. Each byte (or word) in the array
represents a y-coordinate on the line graph. The x-coordinate is the index of that array
distributed evenly throughout the graph. The line weight (thickness) is user-defined, as
well as the number of samples in the x direction and the sampling rate. The line graph
can be drawn over a background image. The graph is scaled in the y-direction based on
yMin and yMax.

Multiple line graphs can be handled by a single Line Graph Widget. Each line graph shares the same yMin, yMax,
xSamples and updateRate, but each graph needs its own href, lineWeight and linePattern values. The line graph that
uses the first function specified in href has the line weight specified by the first number in lineWeight and the pattern
specified by the first number in linePattern. The array specified in the second href function must be adjacent to the
array specified in the first href function. For example, if displaying two line graphs, with an xSample of 10, the href
functions would have to look something like this: InternalRAM.bytes(0).array(10),InternalRAM.bytes(10).array(10).

Line Graph Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Line Graph is to start out invisible or not.
If the attribute is not present, then by default the Line Graph is visible. If the Line Graph starts out invisible, the only
way to make it visible again is via the IWC method reappear().

Parameter="backgroundImage" value="image" — Image used as the Line Graph background image. Image dimensions
should be the same as the dimensions of the Line Graph Widget. See Image Formats for supported image types. If no
image specified, the default background will be the color specified in fillColor.

Parameter="fillColor" value= See color entry conventions — Specifies the desired background color. If no fillColor is
specified, the default color is white. If backgroundImage specified, fillColor is not used.

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all available
functions for the Line Graph Widget. The function is called at an update rate specified by the updateRate attribute. If
using multiple graphs, separate each function by a comma.

Parameter="lineColor" value= See color entry conventions — Specifies the desired line graph line color. If no line color
is specified, the default color is black. If the alpha is FF, then the line color is fully opaque. If using multiple graphs,
separate each color by a comma. Only the first color can be specified by the color picker. Subsequent colors must be
entered manually, separated by a comma.

Parameter="lineWeight" value="pixels" — Defines the weight (thickness) of the active line graph in pixels. If using
multiple graphs, separate each weight by a comma. The range is 1- 7 (0x01 - 0x07).

Parameter="updateFreq" value ="number" — Specifies the href function call frequency (specified in seconds, with a
single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — Specifies the delay time from when the page is loaded until the first
href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If this number
is not specified, then the delay time defaults to the updateRate value.

Parameter="xSamples" value="number" — Number of samples along the horizontal x-axis. The range is 2 - 125
(for a UART byte array), 2 - 62 (for a UART word array), 2 - 256 (for an InternalRAM byte array) and 2 - 256 (for an
InternalRAM word array).
NOTE: The value must be less than the value specified in the WIDTH attribute of the tag.
TIP: In order for the graph to reach the far right of the dimensions of the Line Graph, refer to the following algorithm: #
of pixels between plot points = (WIDTH of - 1) / (xSamples-1).

For example, if you want to completely fill the graph of a 101 pixel wide line graph, then you should have a number that
is one greater than a perfect divisor of 100 as your xSamples. So, your xSamples could be 3, 5, 6, 11, 21, 26, 41, 51. If 6
is chosen, the # of pixels between plot points is (101-1)/(6-1) = 20 pixels.

Parameter="yMax" value="number" — Maximum value returned from the href function; must be greater than yMin.
If the function returns a byte, the range is 1 - 255 (0x01 - 0xFF). If the function returns a word, the range is 1 - 65535
(0x01 - 0xFFFF).

Parameter="yMin" value="number" — Minimum value returned from the href function; must be less than yMax. If the
function returns a byte, the range is 0 - 254 (0x00 - 0xFE). If the function returns a word, the range is 0 - 65534 (0x00 -
0xFFFE).

Optional Line Graph Parameter Attributes:

Parameter="axisColor" value= See color entry conventions — Specifies the desired linegraph axis color. See section on
colors for more information. If no axis color is specified, the default color is black. This attribute is only applicable when
showAxis is CHECKED.

Parameter="enableVertical" value="CHECKED" or "UNCHECKED" — Specifies if the Line Graph can have vertical lines
or not. If CHECKED, then two data points are needed for every plot point. If a vertical line is not desired, then both
points should be the same value. Basically, every x coordinate gets two y-coordinates. So, if xSamples is set to 10, you
will need to furnish the Line Graph with 20 data points. If this attribute is not present, it defaults to false.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="showAxis" value="CHECKED" or "UNCHECKED" — Specifies if the Line Graph is to have an x and y axis
frame. By default the Line Graph does not have a frame. Checking showAxis will cause the Line Graph to have a frame.

Line Plot

The Line Plot Widget is a live 2-dimensional line plot that represents a byte (or
word) returned from an href function call. The x and y-axis' are drawn based on
the width and height. The line plots from left-to-right, continuously wrapping and
does not get erased upon the wrap. The plot is updated at each new x-sample
and the current location is kept via a vertical cursor that is the same height as the
y-axis. The plot is scaled in the y-direction based on yMin and yMax.

Multiple line plots can be handled by a single Line Plot Widget. Each line plot shares the same yMin, yMax, xSamples
and updateRate, but each plot needs its own href, lineColor, and lineWeight values. To add the multiple values to the
href, lineColor, and lineWeight, use a comma to separate the values.

Line Plot Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Line Plot is to start out invisible or not.
If the attribute is not present, then by default the Line Plot is visible. If the Line Plot starts out invisible, the only way to
make it visible again is via the IWC method reappear().

Parameter="axisColor" value= See color entry conventions — Specifies the desired lineplot axis color. See section on
colors for more information. If no axis color is specified, the default color is black. If the alpha is FF, then the axis color is
fully opaque.

Parameter="backgroundImage" value="image" — Image used as the Line Plot background image. Image dimensions
should be the same as the dimensions of the Line Plot Widget. See Image Formats for supported image types. If no
image specified, the default background will be the color specified in fillColor.

Parameter="cursorColor" value= See color entry conventions — Specifies the desired lineplot cursor color. See section
on colors for more information. If no cursor color is specified, the default color is black. If the alpha is FF, then the
cursor color is fully opaque.

Parameter="fillColor" value= See color entry conventions — Specifies the desired background color. See section on
colors for more information. If no fill color is specified, the default color is white. If backgroundImage specified, fillColor
is not used. If the alpha is FF, then the fill color is fully opaque.

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all available
functions for the Line Plot Widget. The function is called at an update rate specified by the updateRate attribute. If
using multiple plots, separate each function by a comma.

Parameter="lineColor" value=See color entry conventions — Specifies the desired lineplot line color. See section on
colors for more information. If no line color is specified, the default color is black. If the alpha is FF, then the line color is
fully opaque. If using multiple plots, separate each color by a comma. Only the first color can be specified by the color
picker. Subsequent colors must be entered manually, separated by a comma.

Parameter="lineWeight" value="pixels" — Defines the weight (thickness) of the active line plot in pixels. If using
multiple plots, separate each weight by a comma. The range is 1- 7 (0x01 - 0x07).

Parameter="updateFreq" value ="number" — Specifies the href function call frequency (specified in seconds, with a
single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — Specifies the delay time from when the page is loaded until the first
href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If this number
is not specified, then the
delay time defaults to the value of updateFreq.

Parameter="xSamples" value="number" — Number of samples along the horizontal x-axis. The range is 2 - 638 (0x02 -
0x27E). NOTE: The value must be less than the value specified in the WIDTH attribute of the tag.

Parameter="yMax" value="number" — Maximum value returned from the href function; must be greater than yMin.
If the function returns a byte, the range is 1 - 255 (0x01 - 0xFF). If the function returns a word, the range is 1 - 65535
(0x01 - 0xFFFF).

Parameter="yMin" value="number" — Minimum value returned from the href function; must be less than yMax. If the
function returns a byte, the range is 0 - 254 (0x00 - 0xFE). If the function returns a word, the range is 0 - 65534 (0x00 -
0xFFFE).

Optional Line Plot Parameter Attributes:

Parameter="noAxis" value="CHECKED" or "UNCHECKED" — Specifies if the Line Plot is to have an x and y axis. If the
attribute is not present, then by default the Line Plot has an x and y axis.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Linear Gauge

The Linear Gauge Widget uses two images (a background image and a pointer image) to create a custom
"linear gauge". A byte (or word) returned from a function call is the input. The pointer travels linearly on
the background image and is positioned based upon the value of the byte (or word) returned from an
href function call. The height and width dimensions of the background image determine whether the
pointer travels horizontally or vertically. By default, the longer dimension establishes the path that the
pointer travels. Optionally, the orientation can be specified if it is desired to have the pointer travel the
shorter dimension.

Linear Gauge Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Linear Gauge is to start out invisible or
not. If the attribute is not present, then by default the Linear Gauge is visible. If the Linear Gauge starts out invisible,
the only way to make it visiblare again is via the IWC method reappear().

Parameter="backgroundImage" value="image" — Image used as the linear background image. Image dimensions
must be exactly the same as the dimensions of the Linear Gauge Widget. See Image Formats for supported image
types.

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all available
functions for the Linear Gauge widget. The function is called at an update frequency specified by the updateFreq
attribute.

Parameter="max" value="number" — Maximum value returned from the href function; must be greater than min.
If the function returns a byte, the range is 1 - 255 (0x01 - 0xFF). If the function returns a word, the range is 1 - 65535
(0x01 - 0xFFFF).

Parameter="min" value="number" — Minimum value returned from the href function; must be less than max. If the
function returns a byte, the range is 0 - 254 (0x00 - 0xFE). If the function returns a word, the range is 0 - 65534 (0x00 -
0xFFFE).

Parameter="minAt" value=""LEFT" or "RIGHT" or "TOP" or "BOTTOM"" — Determines where the minimum value of
the linear gauge is located. When the minimum value is returned, the pointer is located at the minAt location. As the
value increases, the pointer travels the length of the linear background image until the maximum value is reached and
the pointer is then located at the opposite extreme of the minAt location. Default values are LEFT for horizontal linear
gauges and BOTTOM for vertical linear gauges. The options are:

• LEFT — The pointer value increases from left to right. (horizontal linear gauge only)
• RIGHT — The pointer value increases from right to left. (horizontal linear gauge only)
• TOP — The pointer value increases from top to bottom. (vertical linear gauge only)
• BOTTOM — The pointer value increases from bottom to top. (vertical linear gauge only)

Parameter="pointerImage" value="image" — Image used as the pointer which travels across the linear background
image. See Image Formats for supported image types.

Parameter="updateFreq" value ="number," — Specifies the href function call frequency (specified in seconds, with a
single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — Specifies the delay time from when the page is loaded until the first
href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If the second
number is not specified, then the delay time defaults to the value of updateFreq.

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Specifies if the Linear Gauge pointer will wait for valid
data before being displayed on the linearImage. If CHECKED, the Linear Gauge pointer will not display until valid data
is received. If UNCHECKED, or the attribute is not present, the Linear Gauge pointer starts at the minAt location until
the first packet of data is received. This is useful when the Href contains a UART or USB method and may not return
immediately.

Optional Linear Gauge Parameter Attributes:

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="orientation" value="HORIZONTAL" or "VERTICAL" — Specifies if the pointer icon is to travel horizontally
or vertically. The orientation
parameter will override the orientation determined by the height and width dimensions.

Parameter="pointerOffset" value="number" — Specifies the number of pixels from the center of the channel the
handle is located. If a vertical slider, positive numbers shift the handle to the right and negative numbers shift it to the
left. If a horizontal slider, positive numbers shift the handle to the bottom and negative numbers shift it to the top. [The
range is -100 through 100].

Numeric Field

The Numeric Field Widget uses a byte (or word) returned from an href function call to display a
mixture of static text and a live number. The string is input using the standard C printf format.
The Numeric Field Widget can display in integer, hexadecimal, and floating-point formats. Like
printf, the variable is entered using the % character. The first digit following the % specifies the

number of character spaces allocated to the live numeric field (including a decimal point, and plus (+) or minus (-)
symbols). You can also have static text preceding and following the live numeric field. For example, to create a numeric
field that displays "Output = 2.25 Volts", the printf field would read: "Output = %5.2f Volts". In this example, "5"
specifies the number of character spaces, ".2" specifies the number of digits to the right of the decimal, and "f"
specifies floating-point numbers.
If the width of the numeric field widget is less than required, the string will be truncated. Make sure your dimensions
are large enough to hold all your text and numbers.

Numeric Field Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Numeric Field is to start out invisible or
not. If the attribute is not present, then by default the Numeric Field is visible. If the Numeric Field starts out invisible,
the only way to make it visible again is via the IWC method reappear().

Parameter="border" value="number" — Specifies width, in pixels, of the border around the dimensions of the
numeric field. Default is 0, meaning no border.

Parameter="borderColor" value= See color entry conventions — Specifies the desired Numeric Field border color.
See section on colors for more information. If no border color is specified, the default color is black. Only applicable if
border is set to something other than 0. If the alpha is FF, then the border is fully opaque.

Parameter="fillColor" value= See color entry conventions — Specifies the desired Numeric Field fill color. See section
on colors for more information. If no fill color is specified, the default color is the current background color. If the alpha
is FF, then the fillColor is fully opaque.

Parameter="font" value="font, font size" — Specifies the font and font size used for the static text defined in printf.
See Amulet GEM Font Converter for more information regarding the creation of .auf font files. Default is Bitstream Vera
Sans. The default font size for the static text is 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the desired static text font color. See section
on colors for more information. If no font color is specified, the default color is black.

Parameter="fontStyle" value="PLAIN" or "BOLD" or "ITALIC" — Specifies the style associated with the font of the
static text defined in printf. PLAIN overrides any other style. The available font styles are:

• PLAIN — The option text uses the standard font. (i.e. text)
• BOLD — The option text is bold. (i.e. text)
• ITALIC — The option text is italicized. (i.e. text)

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all available
functions for the Numeric Field Widget. The function is called at an update rate specified by the updateFreq attribute.

Parameter="horizontalAlign" value="LEFT" or "CENTER" or "RIGHT" — Specifies the horizontal alignment of the string
associated with the printf attribute within the Numeric Field dimensions. Only one value is allowed; you cannot mix
horizontal alignments. Default is LEFT.

Parameter="max" value="number" — Maximum value returned from the href function; must be greater than min.
If the function returns a byte, the range is 1 - 255 (0x01 - 0xFF). If the function returns a word, the range is 1 - 65535
(0x01 - 0xFFFF).

Parameter="maxFld" value="number" — Specifies what the Numeric Field displays when the maximum value is
returned from the href function call. When using hexadecimal, you must precede the minFld number with 0x. By
default, the 0x will NOT be displayed unless the "#" flag is used in the printf field. The maxFld value does NOT have to
be greater than the minFld value. Range is -65535 to 65535 when using integers and floating point numbers and 0 to
0xffff when using hex numbers. See note below regarding the span between minFld and maxFld.

Note regarding the span between minFld and maxFld: When using integers and floating point numbers, the value
stored by the Amulet OS is a 16-bit number. When using a floating point number, the decimal point is removed and
the digits to the right of the decimal point are concatenated with those to the left of the decimal point. So, 655.35 is
stored as 65535 (the maximum 16-bit number). In addition, the span between minFld and maxFld is limited to a 16-
bit number. For example if the min is -65535, then the largest max can be is 0 (which would result in a span of 65535).
Therefore, even though -65535 is a valid min and 65535 is a valid max, the span is larger than a 16-bit number (causing
an Amulet compiler error).

Parameter="min" value="number" — Minimum value returned from the href function; must be less than max. If the
function returns a byte, the range is 0 - 254 (0x00 - 0xFE). If the function returns a word, the range is 0 - 65534 (0x00 -
0xFFFE).

Parameter="minFld" value="number" — Specifies what the numeric field displays when the minimum value is
returned from the href function call. When using hexadecimal, you must precede the minFld number with 0x. By
default, the 0x will NOT be displayed unless the "#" flag is used in the printf field. The minFld value does NOT have
to be less than the maxFld value. (Negative slope is permissible.) Range is -65535 to 65535 when using integers and
floating point numbers, and 0 to 0xffff when using hex numbers. See note regarding the span between minFld and
maxFld.

Formatting Value minFld Example maxFld Example

%3i -20 10

%3i 200 999

%3i 200 -40

%5.2f -2.00 0.00

%5.2f 0.00 25.00

%6.2f -50.00 50.00

%#4x 0x00 0xff

%2X 0xFF 0xAA

Table 1. Numeric Field formatting examples using the right-justified default. (The implied ranges are arbitrary.)

Parameter="printf" value="text %format text" — Specifies the text and the formatted numeric field to be displayed
(similar to the standard C program printf command). The Numeric Field Widget can display integer, hexadecimal, and
floating-point numbers. See Using Amulet Formatted Text for more formatting options.
To display integers, the format is %ai, where "a" is the number of character spaces, and "i" specifies integers. With
floating-point numbers, the format is %a.bf, where "a" is the total number of character spaces, "b" is the number of
digits to the right of the decimal point, and "f" specifies floating-point numbers. With hexadecimal numbers, the format
is %aX or %ax, where "a" is the number of character spaces, and "X" specifies that the hexadecimal digits will be upper
case (A-F), while "x" specifies lower case (a-f).

NOTE: To display a % symbol in the numeric field, use %% (e.g. Duty Cycle(%%)=%5.2f will display Duty Cycle(%)=99.99).
There are also flags that change the numeric field format. Format flags are entered between the % and the character
space specification. The flags are: "-", "+", "0", "#" and " ". The flags are defined, as follows:

• "-" — specifies that the numeric field is left-justified. (The default is right-justified.)
• "+" — specifies that positive numbers are preceded with a plus sign.
• "0" — specifies that a right-justified numeric field lead with zeroes. (The default is right-justified with leading
spaces).
• "#"— specifies that displayed hexadecimal numbers are preceded with 0x.
• " " — a blank space specifies that a left-justified numeric field lead with a single space when displaying a positive
number, and lead with a negative sign (-) when displaying a negative number.

Parameter="updateFreq" value ="number" — Specifies the href function call frequency (specified in seconds, with a
single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — Specifies the delay time from when the page is loaded until the first
href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If this number
is not specified, then the delay time defaults to the value in updateFreq.

Parameter="verticalAlign" value="TOP" or "MIDDLE" or "BOTTOM" — Specifies the vertical alignment of the string
associated with the printf attribute within the Numeric Field dimensions. Only one value is allowed; you cannot mix
vertical alignments. Default is TOP.

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Specifies if the Numeric Field will wait for valid data
before being displayed on the LCD. If CHECKED, the Numeric Field will not display any dynamic numbers until the first
packet of data is received. If UNCHECKED, or the attribute is not present, the Numeric Field starts out displaying the
minimum value until the first packet of data is received. This is useful when the Href contains a UART or USB method
and may not return immediately.

Optional Numeric Field Parameter Attributes:

Parameter="context" value="String"— Specifies the context of the label string for translation. No context is not the
same as an empty context. See Context under the Localization feature for more info.

Parameter="colorInvert" value="REGION" or "STRING" or "NONE" — Specifies if the string is shown with alternate
colors. If REGION selected, the fillColorAlt and fontColorAlt will be used instead of fillColor and fontColor. If STRING
selected, only fontColorAlt will be used instead of fontColor. If NONE selected, String Field will use fillColor and
fontColor. Only one value is allowed; you cannot mix color inversion properties. Default is NONE.

Parameter="fillColorAlt" value= See color entry conventions — Specifies the desired Numeric Field fill color if
colorInvert set to REGION. See section on colors for more information. If no alternate fill color is specified, the default
alternate fill color is the logical inverse of the current fillColor.

Parameter="fontColorAlt" value= See color entry conventions — Specifies the desired font color if colorInvert set
to either REGION or STRING. See section on colors for more information. If fontColorAlt is not specified, the default
alternate font color is the logical inverse of the current fontColor.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Rectangle

A Rectangle Widget is a purely graphical object with some added features beyond
what graphic primitives are capable of, such as rounded corners, gradient fills, and
runtime customization through IWC calls. The corners can be completely rounded
and in the case where the width and height are the same, this creates a circle.

Rectangle Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the Rectangle is to start out invisible. If the
Rectangle starts out invisible, the only way to make it visible again is via the IWC method reappear().

Parameter="fillColor" value= See color entry conventions — Specifies the desired Rectangle fill color. See section on
colors for more information. If no fill color is specified, the default color is black. If the alpha is FF, then the fill color is
fully opaque.

Parameter="borderColor" value= See color entry conventions — Specifies the desired Rectangle border color. See
section on colors for more information. If no border color is specified, the default color is the fillColor color. If the alpha
is FF, then the border color is fully opaque.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="weight" value="number" — Specifies the thickness of the border in the range 0 to 255. This can be
changed at any time with the setLineWeight(x) IWC command.

Parameter="radius" value="number" — Specifies the radius of the border line in the range 0 to 255. Values higher
than half the width or height are clipped to half of the smallest dimension.

Optional Rectangle Parameter Attributes:

Parameter="gradientColor" value= See color entry conventions — Enables gradient drawing when added to the
widget and specifies the desired gradient end color. The gradient start color will be the fillColor. If no gradientColor is
specified, the Rectangle will not draw a gradient. See section on colors for more information.

Parameter="gradientOrientation" value="Horizontal" or "Vertical" — Specifies the direction in which the gradient
transition occurs.

Parameter="gradientShape" value="Linear" or "Bilinear" — Specifies the pattern used to draw the gradient. For the
Linear gradient, a horizontal orientation transitions from the fillColor on the left of the Rectangle to the gradientColor
on the right, while a vertical orientation transitions from the fillColor at the top to the gradientColor at the bottom.
For a Bilinear gradient, a horizontal orientation transitions from the fillColor on the left of the Rectangle to the
gradientColor in the center and then back to the fillColor on the right, while a vertical orientation transitions from the
fillColor at the top to the gradientColor in the middle and back to the fillColor at the bottom.

String Field

The String Field Widget calls a function that returns either a null-terminated string of UTF-8
characters, or a one-byte index into a list of pre-built strings. The string field can display a
mixture of static text and a dynamic string. The static text is input using the standard C printf

format. Like printf, the conversion specification begins with a % and ends with the conversion character "s".

If a UTF-8 string is received, then the acquired string is copied to the dynamic string buffer, which has a length that
defaults to 25 bytes. This dynamic string is inserted where the conversion specification (i.e. %s) resides in the printf
string. To increase the maximum number of characters up to 1000, see precision below.
If a byte is received, the pre-built string that has the same value as the acquired byte is inserted where the conversion
specification resides in the printf string. The values associated with each pre-built string are specified similar to C's
"enum" specifier, where the first string will have a value of 00, the second item 01, etc, unless an explicit value is given.

The static part of the string is automatically passed through localization, if specified, and the dynamic parts of the string
can be passed through the localization if desired. Once translated the string is drawn into the canvas, an off-screen
buffer to store the pixel data that is usually the size of the stringField widget, but may be expanded for example to
enable scrolling text and moved using one of the 6 canvas operations addCanvasX/Y, setCanvasX/Y, and subCanvasX/Y.

If the width of the String Field canvas is less than required, and the height of the string field canvas is tall enough, the
string will wrap automatically. If there is not enough room to wrap, the string will be truncated. User-defined wraps can
be specified by entering "\n" within the static text, or by sending a 0x0A in the dynamic text, at the spot you would like
the wrap to occur. There is a maximum of 20 wrapped lines per String Field.

String Field Parameter Attributes:

Parameter="invisible" value="CHECKED" or "UNCHECKED" — Specifies if the String Field is to start out invisible or not.
If the attribute is not CHECKED, then by default the String Field is visible. If the String Field starts out invisible, the only
way to make it visible again is via the IWC method reappear().

Parameter="border" value="number" — Specifies width, in pixels, of the border around the dimensions of the String
Field. Default is 0, meaning no border.

Parameter="borderColor" value= See color entry conventions — Specifies the desired String Field border color. See
section on colors for more information. If no border color is specified, the default color is black. Only applicable if
border has a value of 1 or greater.

Parameter="fillColor" value= See color entry conventions — Specifies the desired String Field fill color. See section on
colors for more information. If no fill color is specified, the default color is the current background color.

Parameter="font" value="font, font size" — Specifies the font and font size used for the String Field text. The
corresponding .auf file must be included in the Amulet/Color/Configuration/Fonts folder, the root folder, or the root/
Fonts folder. See Amulet GEM Font Converter for more information regarding the creation of .auf files. Default is
Bitstream Vera Sans. The default font size for the String Field text is 12pt.

Parameter="fontColor" value= See color entry conventions — Specifies the desired String Field text color. See section
on colors for more information. If no font color is specified, the default color is black.

Parameter="fontStyle" value="BOLD" or "ITALIC" or "PLAIN" — Specifies the style associated with the string field font.
The available font styles are:

• BOLD — The option text is bold. (i.e. text)
• ITALIC — The option text is italicized. (i.e. text)
• PLAIN — The option text is standard font. (i.e. text)

This attribute defines the default font style of both the static text defined in the printf attribute as well as the dynamic
string returned from the href function. If it is desired to change the dynamic string's font style at run time, see the
UART Protocol documentation regarding the font style escape byte.

Parameter="horizontalAlign" value="LEFT" or "CENTER" or "RIGHT" — Specifies the horizontal alignment of the
string associated with the printf attribute within the String Field dimensions. Only one value is allowed; you cannot mix
horizontal alignments. Default is LEFT.

Parameter="href" value="function" — The function called to retrieve the widget input. See Appendix B for all available
functions for the String Field Widget. The function is called at an update rate specified by the updateFreq attribute.

Parameter="printf" value="text %format text" — Specifies the text and the formatted string field to be displayed
(similar to the standard C program printf command). See Using Amulet Formatted Text for more formatting options.
The string is input using the standard C printf format. Like printf, the conversion specification begins with a % and
ends with the conversion character "s". By default, the dynamic string can be a maximum of 25 characters in length. To
increase the maximum number of characters, see precision below. Between the % and the conversion character there
may be, in order:

• A minus sign, which specifies left adjustment of the dynamic string.
• A number that specifies the minimum field width. The dynamic string will be printed in a field at least this wide. If
necessary it will be padded on the left (or right, if left adjustment is called for) to make up the field width.
• A period, which separates the field width from the precision.
• A number, the precision, that specifies the maximum number of characters to be printed from a string. By default,
the precision length is 25. If a dynamic string longer than 25 characters is desired, set the precision to the maximum
length of the string. The maximum precision size is 500.

NOTE ON WRAPPING: If the width of the String Field widget is less than required, and the height of the string field
widget is tall enough, the string will wrap automatically. If there is not enough room to wrap, the string will be

truncated. User-defined wraps can be specified by entering "\n" within the static text, or by sending a 0x0A in the
dynamic text, at the spot you would like the wrap to occur. There is a maximum of 20 wrapped lines per String Field.
The following table shows the effect of a variety of specifications in printing "hello, world" (12 characters). We have put
colons around each field so you can see its extent.

:%s: :hello, world:
:%10s: :hello, world:
:%.10s: :hello, wor:
:%-10s: :hello, world:
:%.15s: :hello, world:
:%-15s: :hello, world :
:%15.10s: : hello, wor:
:%-15.10s: :hello, wor :

NOTE: To display a literal % symbol in the string field, use a double percent command in the string (e.g. %s at 100 %%
displays your string at 100 %). To display a literal \ symbol in the string field, use a double backslash command in the
string (e.g. %s \\ 100 displays your string \ 100).

Parameter="updateFreq" value ="number" — Specifies the href function call frequency (specified in seconds, with a
single floating-point number). The range is 0.00 - 655.35. A value of 0.00 means update never.

Parameter="updateDelay" value ="number" — Specifies the delay time from when the page is loaded until the first
href function call (specified in seconds, with a single floating-point number). The range is 0.00 - 655.35. If this number
is not specified, then the delay time defaults to the value in updateFreq.

Parameter="verticalAlign" value="TOP" or "MIDDLE" or "BOTTOM" — Specifies the vertical alignment of the string
associated with the printf attribute within the String Field dimensions. Only one value is allowed; you cannot mix
vertical alignments. Default is TOP.

Parameter="waitForInit" value="CHECKED" or "UNCHECKED" — Specifies if the String Field will wait for valid data
before being displayed on the LCD. If CHECKED, the String Field will not display any text, static or dynamic, until the first
packet of data is received. If UNCHECKED, or the attribute is not present, the String Field starts out displaying only the
static text, if any specified, until the first packet of data is received. This is useful when the Href contains a UART or USB
method and may not return immediately.

Optional String Field Parameter Attributes:

Parameter="canvasWidth" value="number"— Specifies the width of the canvas, an off screen buffer to which the text
is drawn. You can move the canvas around using the canvas control IWCs, such as setCanvasX, which can be found here.
If not specified, defaults to the width of the StringField.

Parameter="canvasHeight" value="number"— Specifies the height of the canvas, an off screen buffer to which the
text is drawn. You can move the canvas around using the canvas control IWCs, such as setCanvasX, which can be found
here. If not specified, defaults to the height of the StringField.

Parameter="colorInvert" value="REGION" or "STRING" or "NONE" — Specifies if the string is shown with alternate
colors. If REGION selected, the fillColorAlt and fontColorAlt will be used instead of fillColor and fontColor. If STRING
selected, only fontColorAlt will be used instead of fontColor. If NONE selected, String Field will use fillColor and
fontColor. Only one value is allowed; you cannot mix color inversion properties. Default is NONE.

Parameter="context" value="String"— Specifies the context of the static portion of the printf string and any "options"
parameter strings for translation. No context is not the same as an empty context. See Context under the Localization
feature for more info.

Parameter="fillColorAlt" value= See color entry conventions — Specifies the desired String Field fill color if colorInvert
set to REGION. See section on colors for more information. If no alternate fill color is specified, the default alternate fill
color is the logical inverse of the current fillColor.

Parameter="fontColorAlt" value= See color entry conventions — Specifies the desired font color if colorInvert set
to either REGION or STRING. See section on colors for more information. If fontColorAlt is not specified, the default
alternate font color is the logical inverse of the current fontColor.

Parameter="initialCondition" value="string" — Specifies which options string is initially used when the page is loaded.
It is acceptable to use the options and initialCondition attributes even when requesting the UART.string(x).value(). The
default string will be used until a valid string is received.

Parameter="opacity" value="number" — Specifies the initial opacity of the widget in the range 0 to 255. 0 is fully
transparent and 255 is fully opaque. This can be changed at any time with the setOpacity(x) IWC command.

Parameter="options" value="see image below"— Specifies the strings and its associated value that can be displayed
when using an href that returns a numerical value. The string in the options list whose value equals the value returned
from the href function is displayed.

Intrinsic Values

Control and View Widgets have intrinsic values which can be used to exchange information.

For a Control widget, the intrinsic value represents the data that the widget could pass in an HREF. For example, the
intrinsic value of a slider is the relative position of the handle, scaled between the min and max values. In the slider
example, the intrinsic value changes every time the user moves the slider's handle. Other widgets, like a fuction button,
have a more static value set at compile time.

Most Control Widgets' intrinsic value can be either a BYTE, WORD or STRING. The exceptions to this are the Slider,
CustomSlider, ImageScroller and the grouped CheckBox widgets, which can only have numbers (BYTES or WORDS)
for their intrinsic value. If the href function call is BYTE specific, (i.e. uart0.byte(5).setvalue()), then the range of the
intrinsic value should be 0-255(0x00-0xFF). You can alternately specify a BYTE by putting an ASCII character between

single quotes (i.e. 'A', which would be the BYTE equivalent of 0x41 or 65 decimal.) If the intrinsic value can become
greater than 255, then you should use WORD specific function calls. If the href function call is WORD specific, (i.e.
UART.word(5).setvalue()), then the range of the intrinsic value is 0-65535(0x0000-0xFFFF).

A View widget's intrinsic value represents they data it is currently displaying. In other words, the value returned from
the last HREF call is copied to the intrinsic value of the widget. If the Widget's HREF is pointing at an InternalRAM byte,
but the widget has not been updated since the InternalRAM byte has been updated, the Widget's intrinsic value will
reflect the old value. This is particularly useful in more complex control of layered objects where the update rate is 0
because the automatic refresh may cause unwanted drawing.

Examples:
A view widget's HREF that displays the intrinsic value of a slider:
document.MySlilder_1.value()
A control wiidget's HREF that writes its intrinsic value to an InternalRAM byte:
InternalRAM.byte(0).setValue(instrinsicValue)
By default, empty parenthesis on a method which requires a parameter will pass the instrinsic value. So, the above is
equivalent to:
InternalRAM.byte(0).setValue()

Entering Static Strings

If the href function call is STRING specific, (i.e. uart0.string(5).setvalue()), then the intrinsic value should be specified
between double quotes (i.e. "My string"). The maximum length of a string value is 254 bytes.

Backlight Control
If using a High Performance module, or a standard Amulet module that uses PWM0 to control the LCD backlight, the
command lcdBacklight.setValue(y) can be used to control the LCD backlight intensity, where y can be any value from 0 to
255. 0 is backlight off and 255 is full bright.

Once the backlight intensity has been set, the value can be saved to the embedded flash using the command
lcdBacklight.saveToFlash(), which will allow the backlight to start out at that same intensity upon a power cycle or reset of
the module.

Inter-Widget Communication

All widgets use the href parameter to specify a function call or a group of function calls. One type of function call is
Inter-Widget Communication (IWC). IWC's allow one Amulet widget to invoke the methods of another Amulet widget.
(See Appendix B for a comprehensive listing of all available function calls. See Appendix C for a detailed listing of which
IWC methods apply to which widget or object, as well as a more in-depth description of what the IWC method actually
does.)

IWC borrows some of its syntax from Java Script, a scripting language used within HTML. All IWC function calls start
with "document." which represents the Document Object Model. Every Page has an object called document, which is
one large object that contains pointers to every object (widget, text, images etc...) that is on that Page. To put it simply,
"document." signifies that we're dealing with the current Page.

IWC also borrows concepts from Java, an Object-Oriented Programming(OOP) language. Each widget can be thought
of as an object. As in OOP, each object has its own set of data and a set of well-defined interfaces to that data. As in
Java, IWC refers to these interfaces as methods. Methods are just functions that are specific to a particular object.
Each object has its own set of methods. The same nomenclature as Java is used, where a method is called by using the
object's name followed by the dot operator, followed by the method.

The href nomenclature for IWC's is document.widgetName.method()

Where: document is the name of the Document Object Model, the generic name for
the current page.

 widgetName is the user-defined name of the called widget.

 method() is the name of the method the called widget is to perform.

Control Widgets/Objects, using IWC, can send data to other widgets/objects or invoke other widgets'/objects' methods.
View Widgets, using IWC, can request data from other widgets.

In addition to widgets, there are other objects that have methods that can be invoked using IWC. Images and animated
images, referred to as View Objects, have methods that Control Widgets/Objects can call.

IWC Example

The simplest method to enter IWC calls in the href field is to use Amulet's auto-complete feature by hitting the Tab key.
As an example of how quickly an IWC call can be added, follow the steps below:

1) Open GEMstudio Pro and go to File > New Project

2) Press the OK button using the last used display settings (since that is not important for this example) then choose a
save location wherever you want with any name.

3) Press the button in the lower left to add an object.
4) Navigate to Widgets/Control Widgets and select FunctionButton

5) Follow the same steps to add a Slider.

6) Go to the layout window and move the button to the upper left-hand corner so the two widgets are not on top of
each other.

7) Select the button in the layout and the left-hand pane should now have the Function Button active with all of its
attributes. Click on the empty href attribute and a new window will pop up. Notice the gray text that says ...Press Tab
For Options. This is the key that auto-complete is ready to help.

8) Press the Tab key and a new menu of all the available functions available for this Function Button to call will appear.
Since this is an example on IWC function calls, select document.

9) The href editor will now have "document." printed out and based on the gray "...Press Tab For Options" the auto-
complete is ready to help some more.

10) Press Tab again and the auto-complete will show the names of the objects on this page that the Function Button
is capable of referencing. In this example, there are only two objects, and one of them is the Function Button itself.

Choose the Slider named MySlider_1

11) The href editor now has "document.MySlider_1." printed out and we can see the auto-complete is ready again. Hit
the Tab key and all the IWC methods that the Slider has available that the Function Button can call is in the next auto-
complete menu. For this simple example, select disappear().

12) The href editor finally has "document.MySlider_1.disappear()" printed out and since the function call is complete,
the gray text of "...Press Tab For Options" does not show up any longer. Using auto-complete, we entered an entire IWC
function call and never had to type a single thing or even remember the exact syntax, for that matter.

13) To finish the example, hit the Run button and the GEMplayer will run the project you just created. GEMplayer
should show the Function Button and the Slider in the exact same locations they were within the GEMstudio Pro layout
view. Press the Function Button using your mouse and the Slider should disappear from the display. That is Inter-
Widget Communication!

IWC Method Types

There are 3 different types of IWC methods. 1) methods that do not require parameters; 2) methods that require
parameters; 3) methods that return a value.

1) Methods that do not require arguments (parameters):

There are a number of IWC methods that do not require any parameters passed to them, such as disappear(). When
using auto-complete, if the function ends with () then that means there are no arguments needed.

2) Methods that require arguments (parameters):

There are also a number of IWC methods that do require a parameter to be passed to them, such as setValue(x). The
parameter can be one of many different options. Again, looking at the auto-complete options will let you know what
kind of parameters can be sent to each IWC method. For instance, using the same example as above, we can change
the functionality of the Function Button's href by clicking on the href attribute again in the left-hand pane. For the
sake of this example, use // to comment out the previous function call and then start a new line, then you should see
"...Press Tab For Options" again.

Go through the same steps as before to get "document.MySlider_1." to print out. Hit the Tab key one more time and
the same auto-complete menu will show up again where we picked "disappear()", but this time select "setValue(".

Hit the Tab key once more to get a menu of the parameters that can be used in the setValue method.

Based on this menu, the setValue method can take a calendar object, an internalRAM object, intrinsicValue, and x as
its parameter. Notice that "calendar." and "internalRAM." both end with dots (.), meaning that they are objects, and
if selected, another auto-complete menu will show up to allow you to drill down within the object. "intrinsicValue"
is the current value of the calling object. In this case, a Function Button usually isn't given an intrinsic value, as
"intrinsicValue" is most often used to determine the current value of an object that can change its value, such as a
Slider or List widget. "x" is a place holder for an absolute integer value.

Leaving x in the href function call of "document.MySlider_1.setValue(x)" will result in a compiler error because x is not
a valid number. For this example, we will replace the x with a value of 0x10. Note: The absolute number can be written
in either decimal or hexadecimal (precede with 0x) format. The href window should now look like this:

Select Done and hit the Run button again. GEMplayer should run the project and if the Function Button is pressed,
the handle of the Slider should snap to the left to where the value of 0x10 would be. That is an Inter-Widget
Communication call with an argument.

3) Methods that return a value:

So far, the IWC calls in the examples have all been in the href of a Control Widget. IWC calls can also be used in the href
of a View Widget, but instead of sending data, View Widgets request data.

To continue with the above example, go back to the button in the lower left hand corner of GEMstudio Pro and
add a NumericField widget. Once added, move it so it doesn't overlap the Function Button or the Slider. The layout
should look something like this:

Click on the href attribute of the NumericField and a similar href window should pop up. The gray "...Press Tab For
Options" appears again letting us know auto-complete will work. Hit the Tab key and enter "document.". Hitting Tab
again will now show three objects to choose from, the Function Button, the Numeric Field, and the Slider. For this
example, we will make the Numeric Field display the current value of the Slider, so choose the Slider from the list of
three objects.

Hitting Tab one more time pops up a menu that lists "maskedValue(" and "value()". maskedValue is used to mask out
bits in a hex value. For this example we just want the value of the Slider, so choose "value()".

Hit the Done button and then the Run button to start up GEMplayer. Use your mouse to move the Slider handle and
the Numeric Field will display the value associated with the Slider. That is an Inter-Widget Communication call that
returns a value.

For more information, see Appendix B for a comprehensive listing of all available function calls. See Appendix C for a
detailed listing of which IWC methods apply to which widget or object, as well as a more in-depth description of what
the IWC method actually does.

META Refresh Objects

META REFRESH <META HTTP-EQUIV="REFRESH">

The most powerful, and potentially the most confusing, object in the Amulet system is the META Refresh object. It can
be thought of as an object that exists on a page, but isn't visible on the LCD.
There are four different ways to use the META Refresh control object:
1) Call a function(s) based upon a timer event.
2) Call a function(s) when a timer-based function returns a specific value. (if...then...else function) or (switch statement)
3) Initialize InternalRAM variables with a value returned from a timer-based function.
4) Be a container object that makes no function calls, essentially becoming a variable which other objects/widgets can
reference.

1) Call a function(s) based upon a timer event.

The following documentation is for legacy products, the new Timer widget should be used
in its place.

 <META HTTP-EQUIV="REFRESH" CONTENT="updateRate,
delayRate;URL=function(s);VALUE=number;NAME=string">

This meta tag acts like an anchor that calls its function based upon a timer event instead of a user "hit". Notice the
strange syntax with all of the semi-colon delimited fields enclosed within one set of quotes. Also, REFRESH must be all
uppercase. CONTENT fields are described below:

updateRate,delayRate

The updateRate specifies the frequency that the IF function is called (specified in seconds, with a single floating-point
number). The range is 0.00 - 655.35. 0.00 means update never. The delayRate is optional and specifies the delay time
from when the page is loaded until the initial ONVAR function is called (specified in seconds, with a single floating-point
number). The range is 0.01 - 655.35. If the delayRate is not specified, then the delay time defaults to the updateRate
(frequency) value. If the delayRate is specified and the updateRate is 0.00, then the IF function(s) is called after the
delay time specified by the delayRate and does not update again.

URL=function(s)

The allowable syntax for the "URL=function(s)"string are identical to that of the HREF attribute of the tag or the HREF
attribute for a user-input widget. See Appendix B for available functions.

VALUE=number

Specifies the intrinsic value of this meta refresh object. This parameter is optional because the intrinsic value can
be specified directly within the URL function call as the argument to the method. See note regarding Control Object
intrinsic values.

NAME=string

Specifies the internal name of this meta refresh object. Used for Inter-Widget Communication only.
Examples:

To send out an "invoke RPC #5" message every 500ms, use the following META REFRESH object:

<META HTTP-EQUIV="REFRESH" CONTENT="0.5;URL=UART.invokeRPC(5)">

To send out an "invoke RPC #5" message once immediately upon loading the page, but never again, use the following:

<META HTTP-EQUIV="REFRESH" CONTENT="0,0.01;URL=UART.invokeRPC(5)">

Note: The 0 of "0,0.01" means that the URL function will not have an update rate. The 0.01 of "0,0.01" means that the
URL function will be called 10ms after loading the page.

To launch to a page called parrot after 5 seconds, use the following:

<META HTTP-EQUIV="REFRESH" CONTENT="5;URL=parrot.open()">

2) Call a function(s) when a timer based function returns a specific value (if...then...else
function) or (switch statement)

<META HTTP-EQUIV="REFRESH"
CONTENT="updateRate, delayRate;
IF=function;
{EQ | GT | LT | NEQ}=value;
THEN=function(s);
ELSE=function(s);
NAME=string">

This meta tag acts like an anchor that calls its THEN or ELSE function(s) when the timer-based IF function returns a
specific value, instead of a user "hit". Notice the strange syntax with all of the semi-colon delimited fields enclosed
within one set of quotes. There can only be a single IF statement per meta, but there can be multiple THEN statements
with their corresponding trigger statement. By having multiple THEN statements, the meta can be used like a switch
statement. The IF attribute is like a View Widget's HREF parameter. The THEN and ELSE attributes are like a Control
Widget's HREF parameter. CONTENT fields are described below:

updateRate,delayRate

The updateRate specifies the frequency that the IF function is called (specified in seconds, with a single floating-point
number). The range is 0.00 - 655.35. 0.00 means update never. The delayRate is optional and specifies the delay time
from when the page is loaded until the initial ONVAR function is called (specified in seconds, with a single floating-point
number). The range is 0.01 - 655.35. If the delayRate is not specified, then the delay time defaults to the updateRate
(frequency) value. If the delayRate is specified and the updateRate is 0.00, then the IF function(s) is called after the
delay time specified by the delayRate and does not update again.

IF=function

The value returned by this function call is used to trigger the function(s) in THEN=. The behavior and syntax of this
META attribute is identical to that of the HREF parameter for a View Widget. See Appendix B for available functions.

{EQ | GT | LT | NEQ}=number

This attribute specifies the value and condition that triggers the THEN= function(s). If the value returned from the IF=
function meets the condition, the immediately following THEN= function(s) is called. The value of number can be a
byte, word, InternalRAM byte variable or InternalRAM word variable.

THEN=function(s)

The allowable syntax for the "THEN=function(s)"string are identical to that of the HREF attribute of the tag or the HREF
parameter for a Control Widget. See Appendix B for available functions.

ELSE=function(s) (Optional)

The allowable syntax for the "ELSE=function(s)"string are identical to that of the HREF attribute of the tag or the HREF
parameter for a Control Widget. See Appendix B for available functions.

NAME=string

Specifies the internal name of this meta refresh object. Used for Inter-Widget Communication only.

if...then...else example:

For example, to create a META Refresh object that checks the value of InternalRAM.byte(0) every 500ms and if it is
less than 5 it sends out an RPC(0), else it will send out an RPC(0xFF), use the following:

<META http-equiv="Refresh" content="0.5;
IF=InternalRAM.byte(0).value();
LT=5;
THEN=UART.invokeRPC(0);
ELSE=UART.invokeRPC(0xFF);
NAME=metaRPCLauncher">

switch statement example:

For example, to create a META Refresh object that is similar to a switch statement that checks the value of
InternalRAM.byte(0) every 500ms and if it equals 0 it sends out an RPC(0), if it equals 1 it sends out an RPC(1),
if it equals 2 it sends out an RPC(2), if it equals 3 it sends out an RPC(3), else it will send out an RPC(0xFF), use the
following:

<META http-equiv="Refresh" content="0.5;
IF=InternalRAM.byte(0).value();
EQ=0;
THEN=UART.invokeRPC(0);
EQ=1;
THEN=UART.invokeRPC(1);
EQ=2;
THEN=UART.invokeRPC(2);
EQ=3;
THEN=UART.invokeRPC(3);
ELSE=UART.invokeRPC(0xFF);
NAME=metaRPCLauncher">

3) Initialize Internal RAM variables with a value returned from a timer-based function.

META HTTP-EQUIV="REFRESH" CONTENT="updateRate,
delayRate;ONVAR=function;VALUE=InternalRAM.type(x) ;NAME=string">

This meta tag does not require a URL function since the META object only exists to initialize an Internal RAM variable
value, either a BYTE, WORD or STRING.
The most obvious use for this type of META is for initializing an Internal RAM variable to an internal Amulet value. For
example, to set Internal RAM word variable 0 to the current page number, you could use the following:

<META HTTP-EQUIV="Refresh"
CONTENT="0,0.01;ONVAR=internal.fileNumber.value();value=InternalRAM.word(0)">

Since the value=InternalRAM.word(0), instead of the META Refresh saving the value in its own memory space, it
actually saves it directly to Internal RAM word variable #0.

Another case where this could be useful is if someone wanted to initialize an Internal RAM variable, but wanted to
maintain the slave relationship with the Amulet. Therefore, you could have the META request a variable and store it
directly into an Internal RAM variable without ever sending a master message.

<META HTTP-EQUIV="Refresh" CONTENT="0,0.01;ONVAR=UART.byte(5).value();value=InternalRAM.byte(5)">

The above example will request the value of external byte variable #5 once 10ms after loading the page and save that
value into InternalRAM byte variable #5.

 <META HTTP-EQUIV="Refresh"
CONTENT="0,0.01;ONVAR=UART.words(0).array(4);value=InternalRAM.words(0)">

The above example will request the value of external word variables #0 - #3 once 10ms after loading the page and save
that value into InternalRAM word variables #0 - #3.

4) Be a container object (byte, word or string variable)

META HTTP-EQUIV="REFRESH" CONTENT="updateRate,
delayRate;ONVAR=function;URL=nop();VALUE=number ;NAME=string">

This meta tag does not need to call any functions. It exists to hold a variable value, either a BYTE, WORD or STRING.
Other control objects/widgets can set the value of this "variable" by using document.name.setValue(), and the value of
the "variable" can be read by using document.name.value(), where name is the internal name given in NAME=string.
See note regarding Control Object intrinsic values.

With the addition of InternalRAM variables, using the META as a container object is not needed. InternalRAM uses less
uHTML space as well as the additional benefit of existing outside of a specific page. META objects are only valid in the
page that they are defined in and will be reinitialized every time the page is re-entered. InternalRAM can survive from
page to page, will not be reinitialized every time the page is re-entered, unless you specify it, and InternalRAM can
actually be saved back to the flash, so the variable can persist even after powering down.

Examples:

To send out an"invoke RPC #5" message when the value of a slider (Slider1) equals 0xFF, which is polled every 500ms,
use the following META REFRESH object:

<META HTTP-EQUIV="REFRESH"
CONTENT="0.5;ONVAR=document.Slider1.value();TRIGGER=0xFF;URL=UART.invokeRPC(5);NAME=MetaOne">

This META will continue to send the RPC every 500ms until the slider value no longer equals 0xFF. To have the META
send it out only once, you could have the META URL include the following function after the invokeRPC function:
document.MetaOne.setUpdateRate(0)
This will make the META turn itself off after the first invokeRPC is sent.
To send out a "set byte variable #2 to 0x78" message when the value of external byte variable #4 equals 0xFF, which is
polled every 500ms, use the following META REFRESH object:

<META HTTP-EQUIV="REFRESH"
CONTENT="0.5;ONVAR=UART.byte(4).value();TRIGGER=0xFF;URL=UART.byte(2).setValue(0x78)">

To send out a 'set string variable #5 to "My String"' message when the value of external byte variable #4 equals 0xF0,
which is polled every 500ms, use the following META REFRESH object:

<META HTTP-EQUIV="REFRESH"
CONTENT='0.5;ONVAR=UART.byte(4).value();TRIGGER=0xF0;URL=UART.string(5).setValue("My String")'>

To launch to "Page1"when the value of external byte variable #1 is greater than 0xC0, which is polled every 500ms, and
to "Page2" if the value is less than 0x40, use the following META REFRESH objects:

<META HTTP-EQUIV="REFRESH" CONTENT="0.5;ONVAR=UART.byte(1).value();TRIGGER.GT=0xC0;URL=../
setValue()/Page1.open()"> <META HTTP-EQUIV="REFRESH"
CONTENT="0.5;ONVAR=UART.byte(1).value();TRIGGER.LT=0x40;URL=../setValue()/Page2.open()">

Nested Pages

GEMstudio allows pages to be nested. This can be accomplished by simply dragging one page into another. Once compiled,
the nested page contains all of the objects on the parent page, including all of the code in the Page Functions. This is
especially useful for groups of common objects, such as a row of navigation buttons, clocks and power indicators, or
common code used on multiple pages.

An example of how to use nested pages can be found in the 480x272 Demo project. In the screenshot below, notice
the page called ViewWidgets. ViewWidgets is a parent page to the 8 nested pages below it, namely ViewWidgetsH...,
BarGraph, ImageBar, ImageSequence, LinearGauge, LineGraph, LinePlot, and DynamicImage. The CustomButtons named
BarGraphButton, ImageBarButton, ImageSequenceButton, LinearGaugeButton, LineGraphButton, LinePlotButton,
DynamicImageButton, and ForwardButton are all part of the ViewWidgets page.

In this screenshot, notice that the nested page named DynamicImage has been expanded and there are only four objects
(two StaticTexts, and Image and an AnimatedImage) placed within the actual page. But notice in the layout window that all
the CustomButtons show up as part of that page. This is because ViewWidgets is a parent page to DynamicImage, so all
objects that are in ViewWidgets are also in DynamicImage. That means all the CustomButtons in ViewWidgets are also in
all the other nested pages, even though they were only manually added to a single page. That is the power of parent and
nested pages.

Also note that ViewWidgets is a nested page of WidgetDemos, which contains the common background that is used in all
of the nested pages of both ViewWidgets and ControlWidgets.

Amulet Communication Protocols

Amulet can use either an ASCII-based or a CRC-based serial communication protocol between the Amulet LCD module
and your embedded device (external processor). The ASCII protocol has weak error checking, but can be easier for
beginners to read in a debug terminal window. All new GEMstudio projects default to using the CRC protocol. This is
very similar in structure to Modbus RTU, which includes a 16-bit CRC for robust error checking. These protocols can
work at the same time on all UART and USB ports, which all have their own transmit and receive buffers as well as
baud, parity and other configurations.

The Amulet system has two different ways of interfacing this protocol with an external processor. One method
has the Amulet LCD module as the master and the external processor as the slave. The other method has the
external processor as the master and the Amulet as the slave. Both methods can be run concurrently on the same
GEMstudio page. Amulet master messages are initiated either by timer events or by user input from the touch panel.
Amulet master messages are derived from compiled GEMstudio code stored in the serial flash, eMMC, or SD Card,
depending on your Amulet module.

To set the Amulet as the master, an object needs to have href commands that start with uartx or USB where x can be
0, 1, or 2. If no x is specified, then it defaults to 0. This command will queue a message in the port-specific transmit
buffers of the Amulet OS whenever the control widget is activated, or in a view widget at an interval based upon
the updateRate specified within that particular object. The Amulet expects a response from the external processor
within 200ms, by default. This timeout can be altered in the project settings under the communications tab. If no valid
response is received within the timeout, the Amulet OS will automatically resend up to 10 times before giving up. Each
timeout increments the .

The Amulet does not need to be configured to be a slave. If the external processor chooses to be the master, it can
send a valid Amulet message to the Amulet at any time or on any page and the Amulet will become the slave for that
message. If the Amulet OS has any further queued master messages, it will once again become the master until the
external processor chooses to be the master.

When the Amulet is the slave, the external processor can read and write to "virtual dual-port" RAM which resides
on the Amulet side. The Amulet has individually addressable 1-byte "byte" variables, 2-byte "word" variables, 4-
byte "color" variables, null-terminated string variables and a 6 byte deep RPC buffer. Amulet Widgets can have href
commands that start with InternalRAM to access these "virtual dual-port" RAM variables. By default, there are 256
unique variables of each type, and each string variable reserves 26 bytes, but this can be extended to suite your needs.

The command opcodes are the same, regardless of who is the master or who is the slave. This means that a "Get byte
variable" command sent to the Amulet looks almost exactly like a "Get byte variable" command sent to the external
processor. The one difference is the slave ID, which is the first byte of most messages in the CRC protocol. If the host is
sending a master message to the Amulet processor, the message will start with the Amulet ID. If the Amulet is sending
a master message to the host processor, the message will start with the Host ID. Similarly, CRC responses start with the
same ID as the original message. So if the Amulet sends a master message to the host, the message from the Amulet
processor will start with the Host ID and the response from the host will also start with the Host ID. Conversely, if the
external processor sends a master message to the Amulet processor, the message will start with the Amulet ID and the
response from the Amulet processor will also start with the Amulet ID.

Communication Format

Communications between the Amulet LCD module and an external processor are asynchronous serial transmissions,
with the following formatting options:

Baud Rate:

Standard baud rates: 9600, 14400, 19200, 28800, 38400, 56000, 57600, or 115200bps
Custom baud rate generation is also possible.

Parity:
None, Even, Odd, Space, Mark

Data Bits:
5, 6, 7, 8, 9

Stop Bits:
1, 1.5, 2

Mode Options:
Normal, RS485, HW_Handshaking, ISO7816_T_0, ISO7816_T_1, IRDA

Channel Mode Options:
Normal, Auto, Local_Loopback, Remote_Loopback

The default baud rate is 115,200 bps. Other baud rates are set in the Project Options > Communication tab.

All settings other than baud rate are defined in a configuration file which can be found here, if GEMstudio is installed:
C:\ProgramData\AmuletTech\Global\Configuration\Board\UART

The default .uart file used should correspond do the Amulet Chip specified:

Amulet Chip Default .uart file
AGB5D3HP-BG-E AGB5D3HP UART

default.uart
AGB5D2-BG-E AGB5D2HP UART

default.uart
AGB75LC04-QU-E AGB75L UART

default.uart
ABG75LC04-BG-E AGB75L UART

default.uart

Communication Modifications

The Comm tab under the Project Properties dialog allows customization of several properties.

Protocol Type

Select either ASCII or CRC protocol. The default commonications protocol is CRC

Amulet ID & Host ID (CRC only)

The default slave ID for the Amulet is 1 and for the Host it is 2. This is the first byte the master uses to address
the slave, as per Modbus RTU specifications. If used on a peer to peer network, the slave ID numbers are not
that important, as long as they are unique. If used in a multi-drop network where slave IDs are already defined,
it might be necessary to give the Amulet and the Host new IDs to suit the existing network.

Amulet Slave Response (ASCII only)

When the Amulet receives a "Set" or "Draw" command, by default, it responds back with the corresponding
response byte followed by an echo of all the bytes sent to the Amulet. To cut back on unnecessary bytes,
the SlaveAckRsp META tag attribute can be used. Instead of sending an echo of the entire message, it will
only respond with an ACK (0xF0). If no response is desired, the SlaveNoRsp attribute can be used.

Time-Out

This is the maximum time Amulet gives the host to respond to a message before resending. The default is
200ms.

Null-Terminate All Messages (ASCII only)

By default, the ASCII protocol does not provide for a termination character, except when sending strings. The
Amulet can be forced to null terminate (0x00) every single response by setting this to Yes. This can be handy
in the receive section of your serial protocol code if you don't have time to analyze each byte received as it is
coming in.

Strict Modbus Timing (CRC only)

Modbus protocol specifies a 3.5 character delay between messages. If your host requires this delay, then
Amulet might be sending messages too quickly after receiving a response, in the case that multiple messages
are queued into the transmit buffer. Turning this setting on will enable a non-blocking delay to satisfy Modbus
hardware that depends on this delay.

Extend Communications Protocol Addressing from 8 to 16 bit

When more than 256 InternalRAM variables need to be addressed, or when more than 256 unique UART
variables are desired, then checking this box will add to the size of the address data in each Get or Set
command for commands sent by the Amulet OS as well as expected commands from the Host.

CRC Protocol
The Amulet CRC communication protocol piggybacks on the Modbus RTU standard protocol. That means if your
software already support Modbus RTU communication, you are almost done, you just need to add support for the
Amulet specific function opcodes. For those not familiar with Modbus RTU, there is one oddity when it comes to
numbers greater than 8-bit. When dealing with data within the payload, data is transmitted big-endian, meaning
Most Significant Byte first. But, when dealing with the 16-bit CRC, the CRC is transmitted little-endian, meaning Least
Significant Byte first.

Amulet as Master

When using a UART or USB port, the Amulet CRC protocol is full-duplex, meaning both the Amulet and the host
processor can transmit at the same time. All master messages do require a response message, though. The Amulet LCD
module(master) can send 11 different types of messages to the external processor (slave):

• A "Get byte variable" request. (port.byte(x).value())
• A "Get word variable" request. (word = 2 bytes) (port.word(x).value())
• A "Get string variable" request. (port.string(x).value())
• A "Get byte variable array" request. (port.bytes(x).array(y))
• A "Get word variable array" request. (port.words(x).array(y))
• A "Get label variable" request. (port.label(x).value())
• A "Set byte variable" command. (port.byte(x).setValue(y))
• A "Set word variable" command. (port.word(x).setValue(y))
• A "Set string variable" command. (port.string(x).setValue(y))
• A "Set color variable" command. (port.color(x).setValue(y))
• An "Invoke Remote Procedure Call (RPC)" command. (port.invokeRPC(x))
Where port can be uart0, uart1, uart2 (if applicable) or USB.

If the message is valid, the slave should either return the requested data (if a "Get" request) or confirm the
message was received (if an "Invoke" or "Set" command). If the message is not valid, the slave should respond
with an acknowledge (ACK) to have the Amulet move to the next request, or the slave can respond with a negative
acknowledgement (NAK) to have the Amulet resend the last message. See Error Responses for how to send these error
replys. If there is a CRC error, following the Modbus standard, the message should be ignored. If the message is not
responded to, the Amulet will resend the message after a timeout period.

Amulet as Slave

In the Amulet communications CRC protocol, the slave should not respond until the master is done sending its
message. If the Amulet is going to be the slave in the protocol, the external processor (master) can send twenty-
five different types of messages to the Amulet LCD module (slave). The external processor can read from and write to
all the Amulet Internal RAM variables. The external processor can also send graphic primitives (pixel, line, rectangle,
and filled rectangle) to the Amulet. The external processor can also force the Amulet to jump to a specific page or call a
GEMscript function on the current page.

• A "Get Internal RAM byte variable" request.
• A "Get Internal RAM word variable" request. (word = 2 bytes)
• A "Get Internal RAM string variable" request.
• A "Get Internal RAM color variable" request. (color = 4 bytes)
• A "Get Internal RAM byte array" request.
• A "Get Internal RAM word array" request. (word = 2 bytes)
• A "Get Internal RAM color array" request. (color = 4 bytes)
• A "Get Internal RAM RPC buffer" request.
• A "Set Internal RAM byte variable" command.
• A "Set Internal RAM word variable" command. (word = 2 bytes)
• A "Set Internal RAM string variable" command.
• A "Set Internal RAM color variable" command. (color = 4 bytes)
• A "Set Internal RAM byte variable array" command.
• A "Set Internal RAM word variable array" command. (word = 2 bytes)
• A "Set Internal RAM color variable array" command. (color = 4 bytes)
• A "Set Graphic Primitive color (8-bit)" command.
• A "Set Graphic Primitive color (32-bit)" command.
• A "Set Graphic Primitive color (InternalRAM color index)" command.
• A "Set Graphic Primitive pen weight" command.
• A "Draw pixel" command.
• A "Draw line" command.
• A "Draw rectangle" command.
• A "Draw filled rectangle" command.
• A "Jump to specific page" command.
• A "Call GEMscript function" command.

If the message is valid, the Amulet LCD module slave will either return the requested data (if a "Get" request) or
confirm the message (if a "Draw" or "Set" command). If there is a CRC error, the Amulet will not respond at all. If the
opcode is not a valid Amulet opcode, the Amulet will respond with a NAK and the "Illegal Function" error code #1.

CRC Commands

The protocol is the same regardless of who is the master. So if an external processor is requesting the value of a byte
variable on the Amulet (which would be an Internal RAM byte variable), the command opcode would be the same as if
the Amulet was requesting the value of a byte variable that resides on the external processor.

The table below defines seventeen messages that can be sent between the master and the slave, not counting the
graphic primitive messages. The valid range of variables and Remote Procedure Calls is 0-0xFF. The valid range for
byte variable values returned from the slave (in response to the "Get Byte variable" request) is also 0-0xFF. The valid
range for word variable values returned from the slave (in response to the "Get Word variable" request) is 0-0xFFFF.
String and label variable values returned from the slave (in response to the "Get String variable" request) can have a
maximum of 250 characters plus a null termination character (0x00).

The first byte of all master messages is the ID of the slave processor. If the master is the Amulet processor, the first byte
is the Host ID. If the slave is responding to a master message, it will also start with the ID of the slave processor. The
second byte is always the opcode of the function. See the summary for the full list of available opcodes. The remaining

payload bytes are opcode dependent. The final two bytes are the LSByte and MSByte of the CRC, in that order. See the
CRC documentation on how to derive the 16-bit CRC. Essentially, all bytes prior to the two CRC bytes are run through
the CRC algorithm. The result is the last two bytes of the message. If the CRC received is not the same as the CRC
derived, then the message should be disregarded as the integrity of the message cannot be assured.

For example, if the GEMstudio file being compiled has a view widget with an href of uart0.byte(0x1A).value(),
which will send out the "Get Byte Variable #0x1A" request on uart0, the message to be transmitted would consist of
five bytes. The first byte is the Host ID (by default, 0x02), the second byte is the "Get Byte Variable" opcode (0x20),
third byte is the byte variable number (0x1A), fourth byte is the LSByte of the 16-bit CRC of the first three bytes (0x48),
and the seventh and final byte is the MSbyte of the 16-bit CRC (0x0B). So the five byte message looks like: 0x02 0x20
 0xA1 0x48 0x0B

NOTE: The slave must respond to every valid Amulet command. When commands are not responded to, a time-
out will occur after 200ms, by default, and that message will be repeated until either a response is received or after
a total of eleven attempts. After eleven attempts, all UART variables are reset in an attempt to resync with the
slave processor.

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7... Byte n-2 Byte
n-1

Byte n

Get Byte
Variable

Slave ID 0x20 Variable
Index

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x20 Variable
Index

Value CRC
LSByte

CRC
MSByte

Get Word
Variable

Slave ID 0x21 Variable
Index

CRC
LSByte

CRC
MSByte

Slave Response Slave ID

0x21 Variable
Index

Value
MSByte

Value
LSByte

CRC
LSByte

CRC
MSByte

Get String
Variable

Slave ID 0x22 Variable
Index

CRC
LSByte

CRC
MSByte

Slave Response Slave ID

0x22 Variable
Index

UTF-8
Char

UTF-8
Char

UTF-8
Char

UTF-8
Char...

0x00 (Null
Terminator)

CRC
LSByte

CRC
MSByte

Get Color
Variable

Slave ID 0x23 Variable
Index

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x23 Variable
Index

Value
Bits

31-24
(Alpha)

Value
Bits 23-16

(Blue)

Value
Bits
15-8

(Green)

Value
Bits 7-0
(Red)

CRC
LSByte

CRC
MSByte

Get Byte
Variable Array

Slave ID 0x24 Variable
Start
Index

Count
of Bytes
in Array

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x24 Variable
Start
Index

Count
of Bytes
in Array

Value Value Value... Last Value
in Array

CRC
LSByte

CRC
MSByte

Get Word
Variable Array

Slave ID 0x25 Variable
Start
Index

Count of
Words in

Array

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x25 Variable
Start
Index

Count of
Words in

Array

Value
MSByte

Value
LSByte

Value
MSByte...

Last Value
LSByte in

Array

CRC
LSByte

CRC
MSByte

Get Color
Variable Array

Slave ID 0x26 Variable
Start
Index

Count of
Colors in

Array

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x26 Variable
Start
Index

Count of
Colors in

Array

Value
Bits 31-24

(Alpha)

Value
Bits

23-16
(Blue)

Value
Bits

15-8...
(Green)

Last Value
Bits 7-0
(Red)

in Array

CRC
LSByte

CRC
MSByte

Get RAM
Remote

Procedure

Calls (RPC)1

Slave ID 0x27 CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x27 Count of
RPCs in
Buffer

RPC #1 RPC #2 RPC #3

RPC #4... RPC #n CRC
LSByte

CRC
MSByte

Get Label
Variable

Slave ID 0x28 Variable
Index

CRC
LSByte

CRC
MSByte

Slave Response Slave ID

0x28 Variable
Index

UTF-8
Char

UTF-8
Char

UTF-8
Char

UTF-8
Char...

0x00 (Null
Terminator)

CRC
LSByte

CRC
MSByte

Set Byte
Variable

Slave ID 0x30 Variable
Index

Value CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x30
(ACK)

CRC
LSByte

CRC
MSByte

Set Word
Variable

Slave ID 0x31 Variable
Index

Value
MSByte

Value
LSByte

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x31
(ACK)

CRC
LSByte

CRC
MSByte

Set String
Variable

Slave ID 0x32 Variable
Index

UTF-8
char

UTF-8
char

UTF-8
char

UTF-8
char...

0x00 (Null
Terminator)

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x32
(ACK)

CRC
LSByte

CRC
MSByte

Set
Color Variable

Slave ID 0x33 Variable
Index

Value
Bits

31-24
(Alpha)

Value
Bits 23-16

(Blue)

Value
Bits 15-8
(Green)

Value
Bits 7-0
(Red)

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x33
(ACK)

CRC
LSByte

CRC
MSByte

Set Byte

Variable Array1
Slave ID 0x34 Variable

Start
Index

Count
of Bytes
in Array

Value Value Value... Last Value
in Array

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x34
(ACK)

CRC
LSByte

CRC
MSByte

Set Word

Variable Array1
Slave ID 0x35 Variable

Start
Index

Count of
Words in

Array

Value
MSByte

Value
LSByte

Value
MSByte...

Last Value
LSByte in

Array

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x35
(ACK)

CRC
LSByte

CRC
MSByte

Set Color

Variable Array1
Slave ID 0x36 Variable

Start
Index

Count of
Colors in

Array

Value
Bits 31-24

(Alpha)

Value
Bits 23-16

(Blue)

Value
Bits 15-8
(Green)...

Last Value
Bits 7-0
(Red)

in Array

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x36
(ACK)

CRC
LSByte

CRC
MSByte

Invoke Remote
Procedure
Call (RPC)

Slave ID 0x37 RPC
Index

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x37
(ACK)

CRC
LSByte

CRC
MSByte

Jump To Page

Command1
Slave ID 0x50 Page

Index
MSByte

Page
Index

LSByte

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x50
(ACK)

CRC
LSByte

CRC
MSByte

Get Current

Page Index1
Slave ID 0x51 CRC

LSByte
CRC

MSByte

Slave Response Slave ID 0x50
(ACK)

Page
Index

MSByte

Page
Index

LSByte

CRC
LSByte

CRC
MSByte

Call GEMscript
function

Slave ID 0x52 Function
Name
First
Char

Function
Name
Char ...

Function
Name Last
Char

0x00
(Null
Terminator)

CRC
LSByte

CRC MSByte

Slave Response Slave ID 0x52 Return
Value
MSByte

Return
Value
Byte

Return
Value Byte

Return
Value
LSBYte

CRC
LSByte

CRC MSByte

1 Denotes command is only applicable when Amulet is the Slave.

Table 1. Twenty types of messages can be sent between the master and the slave, not counting the graphic
primitives.
Synchronization--The master initiates all communications by sending a message to the slave. All valid messages from
the master to the slave start with the slave's ID (By default, the Amulet ID is 01 and the host processor's ID is 02). The
payload is comprised of the Amulet message opcode (Byte 2) up to, but not including, the CRC bytes. The number of
bytes following the opcode is dependent upon the opcode itself as each opcode has its own message structure.
When the Amulet is the master, upon receiving the last byte of a valid message from the master, the slave then has,
by default, 200ms to respond to the message before the master times out. After 200ms, if there is no response, the
master will continue to repeat the message until a response is received. After 10 unsuccessful attempts, the Amulet will
flush its transmit buffer and reset all UART variables.

Other time out durations are set in the Project Properties menu from within GEMstudio.
By Modbus RTU standard, if a CRC error occurs, the slave should not respond at all. The master will timeout and resend
the previous message.

NOTE: The external processor slave must respond to every valid Amulet master command. When commands are not
responded to, a time-out will occur, and that message will be repeated 10 more times before flushing the transmit
buffer and resetting all UART variables.

Using Extended Addressing

When there are more than the default 256 InternalRAM variables of any type then the 8-bit addressing scheme of all CRC
commands is no longer sufficient to give UART access to all InternalRAM variables. This can be resolved by checking the box
in the Comm tab of the Project Properties:

This will add 1 byte to every Get and Set command. For example, the original Get Byte Variable is

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Get Byte
Variable

Slave ID 0x20 Variable
Index

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x20 Variable
Index

Value CRC
LSByte

CRC
MSByte

After checking the box, the command and reply becomes

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Get Byte
Variable

Slave ID 0x20 Variable
Index

MSByte

Variable
Index

LSByte

CRC
LSByte

CRC
MSByte

Slave Response Slave ID 0x20 Variable
Index

MSByte

Variable
Index

LSByte

Value CRC
LSByte

CRC
MSByte

The remaining Get and Set commands will be modified in the same manner.

RPC Buffer

If a setup where the Amulet is always the slave is needed or desired, then up to six RPCs can be buffered in the
Amulet's Internal RAM. The external processor can request the contents of the RPC buffer by sending a "Get Internal
RAM RPC buffer" request (0x27).

When the Amulet is the master and an RPC is invoked, the Amulet will immediately send out the RPC command. If
the Amulet is setup to use the Internal RAM RPC buffer instead, then the Amulet will send the RPC to an RPC buffer.
The RPC buffer can only be read by an external processor by sending a "Get Internal RAM RPC buffer" request (0x27).
The Amulet will respond with a count byte and all the RPCs (up to six) stored in the RPC buffer. After sending out the
contents of the RPC buffer, the Amulet will then flush the buffer.

For example, to request the contents of the InternalRAM RPC buffer, the following would be sent to the Amulet:

0x01 0x27 0x40 0x3A

Where:
0x01 is the default Amulet Slave ID
0x27 is the Amulet message to send
0x3A40 is the two-byte CRC, sent LSByte first

If the InternalRAM RPC buffer has the following RPCs in it, 0x01 0x05 0x05 0x06, the following would be returned by
the Amulet:

0x01 0x27 0x04 0x01 0x05 0x05 0x06 0x6E 0x78

If the same request is made before the InternalRAM RPC buffer is repopulated, the following would be returned by the
Amulet:

0x01 0x27 0x00 0x3B 0xF0

CRC-Based Graphic Primitives

Using GEMstudio to create your projects at compile time allows you to make rich user interfaces quickly and easily.
Sometimes, though, the ability to draw graphic primitives like lines, rectangles and filled rectangles at runtime, is
needed. GEMstudio does inherently give you the ability to do this via GEMscript commands, but sometimes it is
easier for the Host controller to drawing directly. Graphics Primitives commands are a way to send unsolicited draw
commands to the Amulet. The drawing of these graphic primitives is independent of the uHTML that is currently being
run on the Amulet. You do need to keep in mind that the uHTML will still be running, so any widgets or objects that
write to the LCD might write over the graphics primitive you send to the LCD.

There are four graphic primitive commands used to set the color and weight of the lines used. The color and line weight
should be sent prior to sending the actual graphic primitive drawing commands. Once the color and line weight is set, it
does not need to be resent unless a change in either color or line weight is desired.

1. Set the graphic primitive 8-bit color (only applicable if the color density for the project is set for 8-bit color)
2. Set the graphic primitive 32-bit color (only applicable if the color density for the project is set for 32-bit color)
3. Set the graphic primitive InternalRAM color index (if wanting the graphic primitive color to be based on the color
stored in an InternalRAM.color variable.) This is limited to one of the first 256 InternalRAM.color variables (index
0-255) even if there are more than 256 variables available.
4. Set the graphic primitive line weight

All graphic primitive commands follow the Amulet CRC-based protocol convention, so the first byte of every command
will be the Amulet ID, followed by the graphic primitive opcode, a payload of data dependent upon the opcode, and
finally a 16-bit CRC.

When setting the graphic primitive 8-bit color, only a single byte is used as the index into the 8-bit color palette
currently defined in the project properties. The graphic primitive 8-bit color opcode is 0x40. The payload is a single 8-
bit index into the palette, making for a total of 5 bytes in the command.
When setting the graphic primitive 32-bit color, the order of each 8-bit color component is Alpha, Blue, Green, Red. The
graphic primitive 32-bit color opcode is 0x41. The payload is made up of four 8-bit color components, making for a total
of 8 bytes in the command.

When setting the graphic primitive InternalRAM.color index, only a single byte is used as the index into the
InternalRAM.color array, so it can only index the first 256 color variables even if there are more. The graphic primitive
InternalRAM color opcode is 0x42. The payload is a single 8-bit index, making for a total of 5 bytes in the command.

When setting the graphic primitive line weight, only a single byte is used to set the width of the graphic primitive
line. The graphic primitive line weight opcode is 0x43. The payload is a single byte, making for a total of 5 bytes in the
command.

There are four graphic primitive drawing commands. All four commands assume that the color and line weight have
already been set prior to sending the drawing commands.

1. Draw pixel
2. Draw line
3. Draw rectangle
4. Draw filled rectangle

The pixel primitive (opcode 0x44) draws a pixel at point1(x and y coordinates). All coordinates are specified by a 16-
bit number, which are in the order of MSByte then LSByte. The payload is made up of the x and y coordinates, so there
are a total of 4 bytes in the payload, making for a total of 8 bytes in the command. The color is determined by the most
recently sent "set graphic primitive color "command, and is the size specified by the most recently sent "set graphic
primitive line weight" command.

The line primitive (opcode 0x45) draws a line from point 1(x and y coordinates) to point 2(x and y coordinates). The
payload is made up of two sets of x and y coordinates, so there are a total of 8 bytes in the payload, making for a total
of 12 bytes in the command. The color is determined by the most recently sent "set graphic primitive color "command,
and the line weight is specified by the most recently sent "set graphic primitive line weight" command.

The rectangle primitive (opcode 0x46) draws a rectangle with a given starting top left point(x and y coordinates) and a
delta x and delta y. The payload is made up of an x and y coordinate plus a 16-bit delta x and a 16-bit delta y, so there
are a total of 8 bytes in the payload, making for a total of 12 bytes in the command. The color is determined by the
most recently sent "set graphic primitive color "command, and the line weight is specified by the most recently sent
"set graphic primitive line weight" command.

The fill rectangle primitive draws a solid rectangle with a given starting top left point(x and y coordinates) and a delta
x and delta y. The payload is made up of an x and y coordinate plus a 16-bit delta x and a 16-bit delta y, so there are
a total of 8 bytes in the payload, making for a total of 12 bytes in the command. The color is determined by the most
recently sent "set graphic primitive color "command. The line weight is not used for the file rectangle graphic primitive.

If a graphics primitive is sent that does not fit within the bounds of the given LCD (i.e. a delta x of 380 pixels on a 320 x
240 LCD) the Amulet will ignore the request. It will respond back serially, but the graphic primitive will not be drawn.

Note on 32-bit color and the Alpha Component

32-bit colors that are entered through GEMstudio are entered using the #rrggbbaa notation, where rr is the 8-bit red
value, gg is the 8-bit green value, bb is the 8-bit blue value, and aa is the 8-bit alpha (transparency) value. Each value
can be a number from 00 to ff (in hex). The level of transparency is set by the alpha channel. The alpha channel is
fully transparent with a value of 00 and completely opaque (no transparency) with a value of FF.

Examples:

Draw a Line:
To draw a line from (0x05,0x07) to (0x65,0x67), using the color fully opaque alpha:0x00, blue:0x00, green:0x00,
red:0x22, and a line weight of 4 the following would be sent to the Amulet:

First send the "set graphic primitive 32-bit color" command:
0x01, 0x40, 0x00,0x00,0x00,0x22, 0x80,0x1C
 | | {a: b: g: r: } { CRC }
 ID set color
 color
 opcode

Then send the "set graphic primitive line weight" command:
0x01, 0x43, 0x04, 0x10,0x43
 | | | { CRC }
 ID set line
 line weight
 weight

Then send the "draw graphic primitive line" command:
0x01, 0x45, 0x00,0x05,0x00,0x07, 0x00,0x65,0x00,0x67, 0x9E,0x64
 | | { x & y of point1 } { x & y of point2 } { CRC }
 ID draw
 line

Draw a Rectangle:

To draw a rectangle that is 0x10C pixels wide, 0x82 pixels tall, has a topleft point at (0x0A,0x05), a line weight of 2 and
using line color blue:0xFF, green:0x00, red:0x00 and fully opaque, the following would be sent to the Amulet:

First send the "set graphic primitive 32-bit color" command:

0x01, 0x40, 0x00,0xFF,0x00,0x00, 0x30,0x35
 | | {a: b: g: r:} { CRC }
 ID set color
 color
 opcode

Then send the "set graphic primitive line weight" command:
0x01, 0x43, 0x02, 0x90,0xF1
 | | | { CRC }
 ID set line
 line weight
 weight

Then send the "draw graphic primitive rectangle" command:
0x01,0x46,0x00,0x0A,0x00,0x05,0x01,0x0C,0x00,0x82,0x1C,0x3F
 | | { x & y of topleft }{ delta x & y }{ CRC
 }
 ID draw
 rectangle

Draw a Filled Rectangle:

To draw a filled rectangle that is 0x140 pixels wide, 0xF0 pixels tall, has a topleft point at (0x00,0x00) and using the
same color as the previously drawn graphic primitive, the following would be sent to the Amulet:

Since the color has already been set, no need to send that string. Since line weight is not used by the fill rectangle
command, no need to send that either.
Send the "draw graphic primitive fill rectangle" command:

0x01, 0x47, 0x00,0x00,0x00,0x00, 0x01,0x40,0x00,0xF0, 0x36,0x5D
 | | { x & y of topleft } { delta x & y } { CRC }
 ID draw
 fill
 rectangle

Graphic Primitives

This table defines the eight types of messages regarding graphic primitives that can be sent between an external
processor and the Amulet. If a graphics primitive is sent that does not fit within the bounds of the given LCD (i.e. a delta
x of 380 pixels on a 320 x 240 LCD) the Amulet will not draw the graphic primitive.

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Set 8-bit
 Color for
Primitive

Slave ID 0x40 8-bit
color
index

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x40
(ACK)

CRC
LSByte

CRC
MSByte

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Set 32-bit
 Color for
Primitive

Slave ID 0x41 Alpha Blue Green Red CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x41
(ACK)

CRC
LSByte

CRC
MSByte

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Set
InternalRAM
Color Index

for Primitive

Slave ID 0x42 IR
color
index

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x42
(ACK)

CRC
LSByte

CRC
MSByte

graphic-primitives-crc.html#

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Set Line
Weight for
Primitive

Slave ID 0x43 Line
Weight

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x43
(ACK)

CRC
LSByte

CRC
MSByte

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

"Draw" Pixel
Primitive

Slave ID 0x44 Pnt X
 MSByte

Pnt X
LSByte

Pnt Y
 MSByte

Pnt Y
LSByte

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x44
(ACK)

CRC
LSByte

CRC
MSByte

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

"Draw" Line
Primitive

Slave ID 0x45 Pnt
1 X

 MSByte

Pnt 1 X
LSByte

Pnt 1 Y
 MSByte

Pnt 1 Y
LSByte

Pnt 2 X
 MSByte

Pnt 2 X
LSByte

Pnt 2 Y
 MSByte

Pnt 2 Y
LSByte

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x45
(ACK)

CRC
LSByte

CRC
MSByte

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

"Draw"
Rectangle
Primitive

Slave ID 0x46 Pnt
1 X

 MSByte

Pnt 1 X
LSByte

Pnt 1 Y
 MSByte

Pnt 1 Y
LSByte

Delta X
 MSByte

Delta X
LSByte

Delta Y
 MSByte

Delta Y
LSByte

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x46
(ACK)

CRC
LSByte

CRC
MSByte

Message Byte 1 Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

"Draw" Fill
Rectangle
Primitive

Slave ID 0x47 Pnt
1 X

 MSByte

Pnt 1 X
LSByte

Pnt 1 Y
 MSByte

Pnt 1 Y
LSByte

Delta X
 MSByte

Delta X
LSByte

Delta Y
 MSByte

Delta Y
LSByte

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x47
(ACK)

CRC
LSByte

CRC
MSByte

Error Responses

There are two types of communications errors that need to be handled by both the host and Amulet processors, CRC
errors due to noise on the line and invalid requests. If the CRC check does not match, the slave should not respond at
all. The master will timeout and resend its last message.
If an invalid request is received (i.e. requesting or setting a variable that does not exist), then the slave should respond
with a NAK and an error code. The NAK is defined as the opcode with the Most Significant Bit set. Normally, the slave
would respond back with the opcode sent to them, but in the case of an error, instead of the opcode, the slave would
respond with the MSBit set plus the opcode sent to them. For instance, if the master was requesting a byte variable
that did not exist, the opcode used to request a byte is 0x20. If an error existed, the slave would respond with 0xA0
(0x80 + 0x20) with the following byte being the error code.
List of error codes:

Error Code Name Explanation Amulet Action
if Error Sent

By Host

Will Amulet
Send?

01 Illegal Function Opcode used was invalid ignore yes

02 Illegal Data
Address

Variable number
used was invalid

ignore no

03 Illegal Data Value Implied length of array is
incorrect (array overflow)

ignore yes

04 Slave Device Fail Slave Device in
failure mode

ignore no

05 Ack Positive Acknowledgement ignore no

06 Slave Busy Slave currently too busy
to process command

resend last
message

no

07 Nak Negative
Acknowledgement

resend last
message

no

08 Memory
Parity Error

Not currently used ignore no

CRC Used In The Amulet CRC Communication Protocol

The Amulet CRC Communication Protocol uses a 16-bit CRC (Cyclic Redundancy Check) to ensure data integrity. Each
message sent is comprised of a slave ID, an Amulet opcode, a variable number of bytes within the message payload,
and finally the two bytes of the CRC. The slave ID, Amulet opcode, and all the bytes of the message payload are run
through the CRC algorithm. The resulting 16-bit CRC is appended to the end of every message. The Least Significant
Byte of the CRC is sent first, followed by the Most Significant Byte of the CRC.
When receiving a packet of information from the Amulet module, the calculated CRC should match the last two bytes
of the packet. If not, then the packet should be disregarded as the integrity of the data cannot be assured.

For example, a master message from the Amulet chip requesting the value of byte variable # 5 would look like this:

0x02 0x20 0x05 0x09 0xC3

Where:

0x02 - Host Processor slave ID
0x20 - Request byte variable (Amulet opcode)
0x05 - Byte variable index #5
0x09 - CRC LSByte
0xC3 - CRC MSByte
Running 0x02 0x20 0x05 through the CRC algorithm results in the 16-bit number 0xC309
Code for the CRC algorithm:

#define CRC_SEED 0xFFFF
#define CRC_POLY 0xA001

int calcCRC(char *ptr, int count)
{
 unsigned short crc = CRC_SEED; // initialize CRC
 int i;

 while (count-- > 0)
 {
 crc = crc ^ *ptr++;
 for (i=8; i>0; i--)
 {
 if (crc & 0x0001)
 crc = (crc >> 1) ^ CRC_POLY;
 else
 crc >>= 1;
 }
 }
 return crc;
}

Jump to specific page

It is possible to send a Master Message to the Amulet which will force it to jump to a specific page within the project.
The page number is an internal 16-bit number that the Amulet Compiler generates. All pages and images are assigned
an internal number which can be determined by looking at the Amulet link map. When this message is received by the
Amulet, it will react as if the fileNumber(x) was launched, meaning the Amulet will jump directly to the page specified
by the 16-bit internal number. The Amulet will respond with a standard ACK message, complete with the 16-bit CRC.

You must NOT jump directly to an image file number, it must be a valid page. If you do errantly jump to a non-valid
page, the Amulet OS will respond with a soft reset. This will act exactly as if the reset button was pressed.

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Jump To Page
Command

Slave ID 0x50 Page Index
MSByte

Page Index
LSByte

CRC
LSByte

CRC
MSByte

Amulet
Response

Slave ID 0x50
(ACK)

CRC
LSByte

CRC
MSByte

Examples (assuming Amulet Slave ID is 0x01):
To jump to page 0x25, send the following sequence:
0x01 0x50 0x00 0x25 0xC0 0x12

To jump to page 0x103, send the following sequence:
0x01 0x50 0x01 0x03 0x40 0x58

Soft Reset

It is possible to send a Master Message to the Amulet which will force it to perform a soft reset. It will react exactly as if
the reset button was pressed.
The message structure is essentially the Jump To Page command, but the page index is 0xFFFF.

Example:
To cause a soft reset, assuming the Amulet Slave ID is 0x01, send the following sequence:
0x01 0x50 0xFF 0xFF 0x00 0x79

Get Current Page Index

To make the Amulet respond with the flash index of the current page, send the "Get Current Page Index" command. It
will respond with a 16-bit value. See the Amulet Link Map for more information

Get Current

Page Index1
Slave ID 0x51 CRC

LSByte
CRC

MSByte

Slave Response Slave ID 0x50
(ACK)

Page
Index

MSByte

Page
Index

LSByte

CRC
LSByte

CRC
MSByte

Example:
To read the flash index of the current page, assuming an Amulet slave ID of 0x01, send the following sequence:
0x01 0x51 0xC1 0xDC
The Amulet will respond with the following if the current page is index 0x20.
0x01 0x51 0x00 0x20 0x51 0xD1

Flow Diagram Example

The flow diagram in the table below depicts a sample CRC communications session between the Amulet
LCD module and an external processor. This sample is setup as a dual master system, with both the Amulet and the
external processor sharing the responsibility of being the master. It is possible to have a system where only the Amulet
is the master, only the external processor is the master, or as in this case, a dual master setup.
The variables used in this example have the following values:

External processor's byte variable 01 = 0x38
External processor's string variable 01 = "Abc"

External processor's word variable 03 = 0x10E8
Amulet Internal RAM byte variable 0xF4 = 0xA8
Amulet Internal RAM word variable 0x76 = 0x0000
Amulet Internal RAM RPC buffer = 0x52 only
Following the communication session, the following has occurred:
External processor's byte variable 01 = 0xFE
External processor performs user-defined RPC 02. (There are no reserved RPC #'s, so all 256 RPC's can perform any
desired function on your processor.)
Amulet Internal RAM word variable 0x76 = 0x02c9
Amulet Internal RAM RPC buffer = empty

Amulet LCD Module Dir. External Processor Description

 0x02 0x20 0x01 0x08 0x00 >> Get byte variable 1

 << 0x02 0x20 0x01 0x38 0x00 0x14 Return byte of byte var 1

 0x02 0x22 0x01 0x09 0x60 >> Get string variable 1

 << 0x02
 0x22 0x01 0x41 0x62 0x63 0x00 0x9E 0x90

 'A' 'b' 'c'

 Return string of string var 1

 0x02 0x30 0x01 0xFE
 0x81 0x83

>> Set byte variable 1 to 0xFE

 << 0x02 0x30 0x00 0xC4 Ack set byte
variable 1 to 0xFE

 0x02 0x37 0x02 0x47 0xF1 >> Invoke RPC2 (User-defined)

 << 0x02 0x37 0x41 0x06 Ack invoke RPC2

 0x02 0x21 0x03 0x88 0x51 >> Get word variable 3

 << 0x02 0x21 0x03 0x10 0xE8 0xAA 0x72

 Return word of word var 3

 0x02 0x20 0x04 0xC8 0x03 >> Get byte variable 4
 (no such variable on server)*

 << 0x02 0xA0 0x05 0x68 0x03 Error (ACK) Move on.

 << 0x01 0x20 0xF4 0x38 0x47 Get Internal RAM
byte var 0xF4

 0x01 0x20 0xF4 0xA8 0x47
 0xC6

>> Return value of
IR byte var 0xF4

 << 0x01 0x31 0x76 0x02 0xC9 0x37 0xD0 Set IR word var
0x76 =>0x02C9

 0x01 0x31 0xC1 0xF4 >> Ack set IR word var 0x76

 << 0x01 0x27 0x40 0x3A Get Internal RAM RPCs

 0x01 0x27 0x01 0x52 0x31
 0xBE

>> Return IR RPC buffer

*NOTE: If master requests an invalid variable, the slave should at least respond with an ACK error code. It will allow
the communications to continue on without displaying bogus data. This really should never happen since you have
control of both the GEMstudio page and your processor's variables.

Summary of Amulet CRC protocol

Summary of Amulet CRC protocol commands with default opcodes:

Command
Opcode

Description Command Can Be
Sent by Amulet

Command Can
Be Sent by

External Processor

0x20 Get byte variable X X

0x21 Get word variable X X

0x22 Get string variable X X

0x23 Get color variable X

0x24 Get byte variable array X X

0x25 Get word variable array X X

0x26 Get color variable array X

0x27 Get RPC buffer X

0x28 Get label variable X

0x30 Set byte variable X X

0x31 Set word variable X X

0x32 Set string variable X X

0x33 Set color variable X X

0x34 Set byte variable array X

0x35 Set word variable array X

0x36 Set color variable array X

0x37 Invoke RPC X

0x40 Set Graphic Primitive 8-bit color X

0x41 Set Graphic Primitive 32-bit color X

0x42 Set Graphic Primitive
InternalRAM color index

 X

0x43 Set Graphic Primitive Line Weight X

0x44 Draw Pixel X

0x45 Draw Line X

0x46 Draw Rectangle X

0x47 Draw Filled Rectangle X

0x50 Jump To Page X

0x51 Get Current Page X

ASCII Protocol

An ASCII communication protocol can be used between the Amulet LCD module and your embedded device (external
processor). This type of protocol encodes all data into ASCII, but leaves control bytes like opcodes outside of the ASCII
range, which is 0x00 to 0x7F. To encode data into ASCII, each byte is first broken into two 4-bit pieces, called nibbles.
These nibbles can be represented by a single hexacedimal character 0-9, A-F which is conveniently indexed 0x30-0x46
in ASCII. So the simple formula for "ASCII-izing" any byte is:

Hi Nibble = ((byte >> 4) & 0x0F) + 0x30
Low Nibble = (byte & 0x0F) + 0x30

Each command consists of an opcode and then ASCII data. There are three exceptions for data that is not encoded into
ASCII.
1) When setting or requesting strings, UTF-8 ecoding represents characters beyond the limited ASCII range typically for
language support beyond English..
2) Also within strings, the Font Style Escape is an inline control byte, and the following data byte is not ASCII encoded
either.
3) The Jump to Specific Page command is not encoded into ASCII

Amulet as Master

Amulet master messages are initiated either by timer events or by user input from the touch panel. The Amulet LCD
module(master) can send eleven different types of messages to the external processor (slave):

• A "Get byte variable" request. (port.byte(x).value())
• A "Get word variable" request. (word = 2 bytes) (port.word(x).value())
• A "Get string variable" request. (port.string(x).value())
• A "Get label variable" request. (port.label(x).value())
• A "Get byte variable array" request. (port.bytes(x).value())
• A "Get word variable array" request. (port.words(x).value())
• An "Invoke Remote Procedure Call (RPC)" command. (port.invokeRPC())
• A "Set byte variable" command. (port.byte(x).setValue(y))
• A "Set word variable" command. (port.word(x).setValue(y))
• A "Set string variable" command. (port.string(x).setValue(y))
• A "Set color variable" command. (port.color(x).setValue(y))

Where port can be uart0, uart1, uart2 (if applicable) or USB

If the message is valid, the slave should either return the requested data (if a "Get" request) or confirm the message
(if an "Invoke" or "Set" command). If the message is not valid, the slave should respond with an acknowledge (0xF0) to
have the Amulet move to the next request, or the slave can respond with a negative acknowledgement (NAK) (0xF1) to
have the Amulet resend the last message.

Amulet as Slave

The Amulet communication protocol is half-duplex, meaning the slave should not respond until the master is done
sending its message. The external processor (master) can send sixteen different types of ASCII messages to the Amulet
LCD module (slave). The external processor can read from and write to all the Amulet Internal RAM variables or Draw
directly into the display. The external processor can also force the Amulet to jump to a specific page.

• A "Get Internal RAM byte variable" request.
• A "Get Internal RAM word variable" request. (word = 2 bytes)
• A "Get Internal RAM color variable" request. (color = 4 bytes)
• A "Get Internal RAM string variable" request.
• A "Get Internal RAM RPC buffer" request.
• A "Set Internal RAM byte variable" command.
• A "Set Internal RAM word variable" command.
• A "Set Internal RAM color variable" command.
• A "Set Internal RAM string variable" command.
• A "Set Internal RAM byte variable array" command.
• A "Set Internal RAM word variable array" command.
• A "Draw line" command.
• A "Draw rectangle" command.
• A "Draw filled rectangle" command.
• A "Draw pixel" command.
• A "Jump to specific page" command.

If the message is valid, the Amulet LCD module slave will either return the requested data (if a "Get" request) or
confirm the message (if a "Draw" or "Set" command). If the message is not a valid Amulet message, the Amulet will not
respond.

ASCII Commands

The protocol is the same regardless of who is the master. So if an external processor is requesting the value of a byte
variable on the Amulet (which would be an Internal RAM byte variable), the command opcode would be the same as if
the Amulet was requesting the value of a byte variable that resides on the external processor.

The table below defines fifteen messages that can be sent between the master and the slave, not counting the graphic
primitive messages. The valid range of variables and Remote Procedure Calls is 0-0xFF. The valid range for byte variable
values returned from the slave (in response to the "Get Byte variable" request) is also 0-0xFF. The valid range for
word variable values returned from the slave (in response to the "Get Word variable" request) is 0-0xFFFF. String and
label variable values returned from the slave (in response to the "Get String variable" request) can have a maximum of
0x1000 bytes plus a null termination character (0x00).
Since this is an ASCII protocol, two bytes must be sent out for every byte of data to be transmitted. All messages
will start with a command character followed by the ASCII representation of all data. For example, if the page being
compiled has a view widget with an href of uart0.byte(0x1A).value(), which will send the "Get Byte Variable #0x1A"
request out uart0, the message to be transmitted would consist of three bytes. The first byte is the command byte for
"Get Byte Variable" 0xD0. The second byte is 0x31, which is the ASCII representation of the high nibble"1". The third
and final byte is 0x41, which is the ASCII representation of the low nibble "A".

NOTE: The slave must respond to every valid Amulet command, even if it's only an acknowledge (0xF0). When
commands are not responded to, a time-out will occur after 200ms, by default, and that message will be repeated until
either a response is received or after a total of eleven attempts. After eleven attempts, all UART or USB variables are
reset in an attempt to resync with the slave processor.

ascii-protocol.html#JumpToPage

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Byte
11

Byte
N

Amulet
Get Byte
Variable

0xD0 Variable
Hi Nibble

Variable
Lo Nibble

Server
Response

0xE0 Variable
Hi Nibble

Variable
Lo Nibble

Value
Hi Nibble

Value
Lo Nibble

Amulet
Get Word
Variable

0xD1 Variable
Hi Nibble

Variable
Lo Nibble

Server
Response

0xE1

Variable
Hi Nibble

Variable

Lo Nibble

|-----MS Byte-----|
Value Hi | Value Hi

Hi Nibble|Lo Nibble

|-------LS Byte-------|
Value Lo | Value Lo
Hi Nibble|Lo Nibble

Amulet
Get String
Variable

0xD2 Variable
Hi Nibble

Variable
Lo Nibble

Server
Response

0xE2 Variable
Hi Nibble

Variable
Lo Nibble

ASCII
char

ASCII
char

ASCII
char

ASCII 0x00
char

Amulet
Get Color
Variable

0xF4 Variable
Hi Nibble

Variable
Lo Nibble

Server
Response

0xF5 Variable
Hi Nibble

Variable
Lo Nibble

|--Red Byte--|
Hi Nibble | Lo Nibble

|--Green Byte--|
Hi Nibble|Lo Nibble

|--Blue Byte--|
Hi Nibble|Lo Nibble

|--Alpha Byte--|
Hi Nibble|Lo Nibble

Amulet
Get Label
Variable

0xD3 Variable
Hi Nibble

Variable
Lo Nibble

Server
Response

0xE3 Variable
Hi Nibble

Variable
Lo Nibble

ASCII
char

ASCII
char

ASCII
char

ASCII 0x00
char

Amulet Get
Remote

Procedure
Calls (RPC)

0xD4** RPC flag
Hi Nibble

RPC flag
Lo Nibble

Server
Response

0xE4 RPC flag
Hi Nibble

RPC flag
Lo Nibble

RPC #1
Hi Nibble

RPC #1
Lo Nibble

RPC #n
Hi Nibble

RPC #n 0x00
Lo Nibble

Amulet
Set Byte
Variable

0xD5 Variable
Hi Nibble

Variable
Lo Nibble

Value
Hi Nibble

Value
Lo Nibble

Server
Response

0xE5 Variable
Hi Nibble

Variable
Lo Nibble

Value
Hi Nibble

Value
Lo Nibble

Amulet
Set Word
Variable

0xD6

Variable

Hi Nibble

Variable

Lo Nibble

|-----MS Byte-----|
Value Hi | Value Hi
Hi Nibble|Lo Nibble

|------LS Byte------|
Value Lo | Value Lo
Hi Nibble|Lo Nibble

Server
Response

0xE6

Variable

Hi Nibble

Variable

Lo Nibble

|-----MS Byte-----|
Value Hi | Value Hi
Hi Nibble|Lo Nibble

|-----LS Byte-----|
Value Lo | Value Lo
Hi Nibble|Lo Nibble

Amulet
Set String
Variable

0xD7 Variable
Hi Nibble

Variable
Lo Nibble

ASCII
char

ASCII
char

ASCII
char

ASCII 0x00
char

Server
Response

0xE7 Variable
Hi Nibble

Variable
Lo Nibble

ASCII
char

ASCII
char

ASCII
char

ASCII 0x00
char

Amulet
Set Color
Variable

0xF6 Variable
Hi Nibble

Variable
Lo Nibble

|--Red Byte--|
Hi Nibble|Lo Nibble

|--Green Byte--|
Hi Nibble|Lo Nibble

|--Blue Byte--|
Hi Nibble|Lo Nibble

|--Alpha Byte--|
Hi Nibble|Lo Nibble

Server
Response

0xF7 Variable
Hi Nibble

Variable
Lo Nibble

|--Red Byte--|
Hi Nibble|Lo Nibble

|--Green Byte--|
Hi Nibble|Lo Nibble

|--Blue Byte--|
Hi Nibble|Lo Nibble

|--Alpha Byte--|
Hi Nibble|Lo Nibble

Amulet
Invoke

Remote
Procedure
Call (RPC)

0xD8 RPC
Hi Nibble

RPC
Lo Nibble

Server
Response

0xE8 RPC
Hi Nibble

RPC
Lo Nibble

Amulet
Get Byte
Variable

Array

0xDD Variable
Hi Nibble

Variable
Lo Nibble

Server
Response

0xED Variable
Hi Nibble

Variable
Lo Nibble

Value
Hi Nibble

Value 0x00
Lo Nibble

Amulet
Get Word
Variable

Array

0xDE Variable
Hi Nibble

Variable
Lo Nibble

Server
Response

0xEE

Variable
Hi Nibble

Variable

Lo Nibble

|-----MS Byte-----|
Value Hi|Value Hi

Hi Nibble|Lo Nibble

|-----LS Byte--------|
Value Lo | Value Lo 0x00
Hi Nibble|Lo Nibble

Amulet
Set Byte
Variable

Array

0xDF** Variable
Hi Nibble

Variable
Lo Nibble

Value
Hi Nibble

Value 0x00
Lo Nibble

Server
Response

0xEF Variable
Hi Nibble

Variable
Lo Nibble

Array
Cnt

Hi Nibble

Array Cnt
Lo Nibble

Amulet
Set Word
Variable

Array

0xF2**

Variable
Hi Nibble

Variable

Lo Nibble

|-----MS Byte-----|
Value Hi | Value Hi

Hi Nibble|Lo Nibble

|-----LS Byte-----|
Value Lo | Value Lo 0x00
Hi Nibble|Lo Nibble

Server
Response

0xF3

Variable
Hi Nibble

Variable
Lo Nibble

Array
Cnt

Hi Nibble

Array Cnt
Lo Nibble

** Denotes command is only applicable when Amulet is set as
Slave.
Table 1. Thirteen types of messages can be sent between the master and the slave, not counting the graphic
primitives.
Synchronization--The master initiates all communications by sending a message to the slave. All valid messages from
the Amulet to the external processor start with one of the opcode bytes. These opcodes are considered the Master
Start Of Message (MSOM) bytes.

NOTE: These MSOM bytes signify the start of a message and they are not allowed in the body of any message except
for when part of a UTF-8 string. For non-string messages, the only valid characters in the body of a message are: ASCII
0-9 (0x31-0x39), and A-F (0x41-0x46). If the slave receives any character other than those specified, the message
should be considered errant, and the slave should start over hunting for a new MSOM character.

All slave responses must start with the counterpart of the MSOM character that began the message that is being
responded to. The body of the response message starts with a byte for byte echo of the command message. The echo
is then followed by any optional response data (in ASCII format).

Upon receiving the last byte of a valid message from the master, the slave then has, by default, 200ms to respond to
the message before the master times out. After 200ms, if there is no response, the master will continue to repeat the
message until a response is received. After 10 unsuccessful attempts, the Amulet will flush its transmit buffer and reset
all UART variables.Other time out durations are set in the Communications Tab of the Project Properties dialog.

NOTE: The external processor slave must respond to every valid Amulet master command. It is okay to respond with
a single byte of acknowledgement (0xF0) without transmitting data, but all Amulet commands should be responded
to. When commands are not responded to, a time-out will occur, and that message will be repeated 10 more times
before flushing the transmit buffer and resetting all UART variables.

Using Extended Addressing

When there are more than the default 256 InternalRAM variables of any type then the 8-bit addressing scheme of all ASCII
commands is no longer sufficient to give UART access to all InternalRAM variables. This can be resolved by checking the box
in the Comm tab of the Project Properties:

This will add 2 bytes to every Get and Set command. For example, the original Get Byte Variable is

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Amulet
Get Byte
Variable

0xD0 Variable
Hi Nibble

Variable
Lo

Nibble

Server
Response

0xE0 Variable
Hi Nibble

Variable
Lo

Nibble

Value
Hi

Nibble

Value
Lo Nibble

After checking the box, the command and reply becomes

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Amulet
Get Byte
Variable

0xD0 Variable
MSByte

Hi Nibble

Variable
MSByte

Lo
Nibble

Variable
LSByte

Hi
Nibble

Variable
LSByte

Lo Nibble

Server
Response

0xE0 Variable
MSByte

Hi Nibble

Variable
MSByte

Lo
Nibble

Variable
LSByte

Hi
Nibble

Variable
LSByte

Lo Nibble

Value
Hi

Nibble

Value
Lo Nibble

The remaining Get and Set commands will be modified in the same manner.

ASCII-Based Graphic Primitives

Using GEMstudio to create your projects at compile time allows you to make rich user interfaces quickly and easily.
Sometimes, though, the ability to draw graphic primitives like lines, rectangles and filled rectangles at runtime, is
needed. GEMstudio does inherently give you the ability to do this via GEMscript commands, but sometimes it is
easier for the Host controller to drawing directly. Graphics Primitives commands are a way to send unsolicited draw
commands to the Amulet. The drawing of these graphic primitives is independent of the uHTML that is currently being
run on the Amulet. You do need to keep in mind that the uHTML will still be running, so any widgets or objects that
write to the LCD might write over the graphics primitive you send to the LCD.

If using the ASCII-based protocol, the Amulet will respond to all graphic primitive commands with a response opcode
(0xE9-0xEB) and an echo of all other bytes. If it is desired to have the Amulet respond with an ACK(0xF0) or no
response at all, a SlaveAckRsp or Slave NoRsp can be used in the communications options. One thing to keep in mind is
that the Amulet will use that attribute for all "Set" or "Draw" commands coming from your external processor.

The line primitive draws a line from point 1(x and y coordinates) to point 2(x and y coordinates), with a 32-bit color
and that has a line weight of 1-15. The line primitive is drawn by sending out the "Draw line primitive" opcode(0xD9),
followed by the x-coordinate of point 1, the y-coordinate of point 1, the x-coordinate of point 2, the y-coordinate of
point 2, the line color and finally the line weight. The x and y coordinates are 16-bit numbers. The line color is made
up of three 8-bit numbers, one blue, one green, and one red. The line weight is a 4-bit number. Because Amulet uses
an ASCII protocol, each coordinate that is sent to the Amulet is comprised of four different bytes. For example, if the
x-coordinate of point 1 is 0x0020, the 4 bytes that would be sent to the Amulet for that particular coordinate would
be 0x30,0x30,0x32,0x30. The line color is comprised of six different bytes, two bytes for the blue component, two

bytes for the green component, and two bytes for the red component. For example, if the desired line color is purple
(blue=0x80, green=0x00, red=0x7E), the 6 bytes sent to the Amulet would be 0x38,0x30,0x30,0x30,0x37,0x45. Line
weight, when sent to the Amulet, is only one byte. The line weight specifies the thickness of the line, range of 1-15. The
entire line primitive message sent to the Amulet is a total of 24 bytes.

The rectangle primitive draws a rectangle with a given starting top left point(x and y coordinates) and a delta x and
delta y, the line color and finally the line weight.. The rectangle primitive is drawn by sending out the "Draw rectangle
primitive" opcode(0xDA), followed by four bytes specifying the x-coordinate of the topleft point, four bytes specifying
the y-coordinate of the topleft point, four bytes specifying the delta x, four bytes specifying the delta y, six bytes
specifying the line color and finally one byte specifying the line weight. The x and y coordinates and the delta x and
delta y are all 16-bit numbers. The line color is comprised of three 8-bit color components, a blue component, a green
component, and a red component. The line weight is a 4-bit number. The delta x is a 16-bit number specifying the
length of the rectangle in the x direction and the delta y is a 16-bit number specifying the height of the rectangle in the
y direction. The line weight specifies the thickness of the line, range of 1-15. The entire rectangle primitive message
sent to the Amulet is a total of 24 bytes.

The fill rectangle primitive draws a solid rectangle with a given starting top left point(x and y coordinates) and a delta
x and delta y, plus a line color. The fill rectangle primitive is drawn by sending out the "Draw fill rectangle primitive"
opcode(0xDB), followed by four bytes specifying the the x-coordinate of the topleft point, four bytes specifying the y-
coordinate of the topleft point, four bytes specifying the delta x, four bytes specifying the delta y, six bytes specifying
the fill color and finally one filler byte. The x and y coordinates and the delta x and delta y are all 16-bit numbers. The
delta x is a 16-bit number specifying the length of the rectangle in the x direction and the delta y is a 16-bit number
specifying the height of the rectangle in the y direction. The fill color is comprised of six different bytes, two bytes for
the blue component, two bytes for the green component, and two bytes for the red component. The line weight is a 4-
bit number, but the line weight is not used by this primitive, but the byte still must be sent, range of 1-15. The entire fill
rectangle primitive message sent to the Amulet is a total of 24 bytes.

If a graphics primitive is sent that does not fit within the bounds of the given LCD (i.e. a delta x of 380 pixels on a 320
x 240 LCD) the Amulet will just ignore the request. It will respond back serially, but the graphic primitive will not be
drawn.

Notice that the order of the color bytes that are sent to the Amulet is blue, green, red. In the HTML, when specifying
colors, the order is red, green, blue.

Examples:

Drawing a Line:
To draw a line from (0x05,0x07) to (0x65,0x67), using color blue:0x00, green:0x00, red:0x22, and a line weight of 4 the
following would be sent to the Amulet:

0xD9,0x30,0x30,0x30,0x35,0x30,0x30,0x30,0x37,0x30,0x30,0x36,0x35,0x30,0x30,0x36,0x37,
 | {-----------------} {-----------------} {-----------------}
{-----------------}
 | pnt 1, x pnt 1, y pnt 2, x pnt 2, y

draw
 (0x05) (0x07) (0x65) (0x67)
line
opcode

0x30,0x30,0x30,0x30,0x32,0x32,0x34
{---------------------------} |
 color line weight
 b:0x00 g:0x00 r:0x22 (0x04)

Drawing a Rectangle:

To draw a rectangle that is 0x10C pixels wide, 0x82 pixels tall, has a topleft point at (0x0A,0x05), a line weight of 2 and
using line color blue:0x00, green:0x00, red:0x00, the following would be sent to the Amulet:

0xDA,0x30,0x30,0x30,0x41,0x30,0x30,0x30,0x35,0x30,0x31,0x30,0x43,0x30,0x30,0x38,0x32,
 | {-----------------} {-----------------} {-----------------}
{-----------------}
 | pnt 1, x pnt 1, y delta x delta y

draw
 (0x0A) (0x05) (0x10C) (0x82)
rectangle
opcode

0x30,0x30,0x30,0x30,0x30,0x30,0x32
{---------------------------} |
 color line weight
 b:0x00 g:0x00 r:0x00 (0x04)

Drawing a Filled Rectangle:
To draw a filled rectangle that is 0x140 pixels wide, 0xF0 pixels tall, has a topleft point at (0x00,0x00) and using fill color
blue:0x25, green:0x46, red:0x73, the following would be sent to the Amulet:

0xDB,0x30,0x30,0x30,0x30,0x30,0x30,0x30,0x30,0x30,0x31,0x34,0x30,0x30,0x30,0x46,0x30,
 | {-----------------} {-----------------} {-----------------}
{-----------------}
 | pnt 1, x pnt 1, y delta x delta y

draw
 (0x00) (0x00) (0x140) (0xF0)
fill

rectangle
opcode

0x32,0x35,0x34,0x36,0x37,0x33,0x32
{---------------------------} |
 color line weight

 b:0x25 g:0x46 r:0x73 (N/A)

Graphic Primitives

See Graphic Primitives for more information regarding the use of graphic primitives.

The table below defines the three types of messages regarding graphic primitives that can be sent between an external
processor and the Amulet. If a graphics primitive is sent that does not fit within the bounds of the given LCD (i.e. a delta
x of 380 pixels on a 320 x 240 LCD) the Amulet will not draw the graphic primitive.

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

"Draw" Line
Primitive

0xD9 Pnt 1 X
Hi Byte

Hi
Nibble

Pnt 1 X
Hi Byte

Lo
Nibble

Pnt 1 X
Lo Byte

Hi
Nibble

Pnt 1 X
Lo Byte

Lo
Nibble

Pnt 1 Y
Hi Byte

Hi
Nibble

Pnt 1 Y
Hi Byte

Lo
Nibble

Pnt
1 Y
Lo

Byte

Pnt 1 Y
Lo Byte

Lo Nibble

Hi
Nibble

Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte
18

Byte 19

Pnt 2 X
Hi Byte

Hi Nibble

Pnt 2 X
Hi Byte

Lo
Nibble

Pnt 2 X
Lo Byte

Hi
Nibble

Pnt 2 X
Lo Byte

Lo
Nibble

Pnt 2 Y
Hi Byte

Hi
Nibble

Pnt 2 Y
Hi Byte

Lo
Nibble

Pnt 2 Y
Lo Byte

Hi
Nibble

Pnt 2 Y
Lo Byte

Lo
Nibble

Blue
 Hi

Nibble

Blue
 Lo Nibble

Byte 20 Byte 21 Byte 22 Byte 23 Byte 24

Green
 Hi Nibble

Green
 Lo

Nibble

Red
 Hi

Nibble

Red
 Lo

Nibble

Line
Weight

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

Amulet
Response

0xE9 Pnt 1 X
Hi Byte

Hi
Nibble

Pnt 1 X
Hi Byte

Lo
Nibble

Pnt 1 X
Lo Byte

Hi
Nibble

Pnt 1 X
Lo Byte

Lo
Nibble

Pnt 1 Y
Hi Byte

Hi
Nibble

Pnt 1 Y
Hi Byte

Lo
Nibble

Pnt
1 Y
Lo

Byte
Hi

Nibble

Pnt 1 Y
Lo Byte

Lo Nibble

Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte
18

Byte 19

Pnt 2 X
Hi Byte

Hi Nibble

Pnt 2 X
Hi Byte

Lo
Nibble

Pnt 2 X
Lo Byte

Hi
Nibble

Pnt 2 X
Lo Byte

Lo
Nibble

Pnt 2 Y
Hi Byte

Hi
Nibble

Pnt 2 Y
Hi Byte

Lo
Nibble

Pnt 2 Y
Lo Byte

Hi
Nibble

Pnt 2 Y
Lo Byte

Lo
Nibble

Blue
 Hi

Nibble

Blue
 Lo Nibble

Byte 20 Byte 21 Byte 22 Byte 23 Byte 24

Green
 Hi Nibble

Green
 Lo

Nibble

Red
 Hi

Nibble

Red
 Lo

Nibble

Line
Weight

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

"Draw"
Rectangle
Primitive

0xDA Pnt 1 X
Hi Byte

Hi
Nibble

Pnt 1 X
Hi Byte

Lo
Nibble

Pnt 1 X
Lo Byte

Hi
Nibble

Pnt 1 X
Lo Byte

Lo
Nibble

Pnt 1 Y
Hi Byte

Hi
Nibble

Pnt 1 Y
Hi Byte

Lo
Nibble

Pnt
1 Y
Lo

Byte
Hi

Nibble

Pnt 1 Y
Lo Byte

Lo Nibble

Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte
18

Byte 19

Delta X
Hi Byte

Hi Nibble

Delta X
Hi Byte

Lo
Nibble

Delta X
Lo Byte

Hi
Nibble

Delta X
Lo Byte

Lo
Nibble

Delta Y
Hi Byte

Hi
Nibble

Delta Y
Hi Byte

Lo
Nibble

Delta Y
Lo Byte

Hi
Nibble

Delta Y
Lo Byte

Lo
Nibble

Blue
 Hi

Nibble

Blue
 Lo Nibble

Byte 20 Byte 21 Byte 22 Byte 23 Byte 24

Green
 Hi Nibble

Green
 Lo

Nibble

Red
 Hi

Nibble

Red
 Lo

Nibble

Line
Weight

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

Amulet
Response

0xEA Pnt 1 X
Hi Byte

Hi
Nibble

Pnt 1 X
Hi Byte

Lo
Nibble

Pnt 1 X
Lo Byte

Hi
Nibble

Pnt 1 X
Lo Byte

Lo
Nibble

Pnt 1 Y
Hi Byte

Hi
Nibble

Pnt 1 Y
Hi Byte

Lo
Nibble

Pnt
1 Y
Lo

Byte
Hi

Nibble

Pnt 1 Y
Lo Byte

Lo Nibble

Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte
18

Byte 19

Delta X
Hi Byte

Hi Nibble

Delta X
Hi Byte

Lo
Nibble

Delta X
Lo Byte

Hi
Nibble

Delta X
Lo Byte

Lo
Nibble

Delta Y
Hi Byte

Hi
Nibble

Delta Y
Hi Byte

Lo
Nibble

Delta Y
Lo Byte

Hi
Nibble

Delta Y
Lo Byte

Lo
Nibble

Blue
 Hi

Nibble

Blue
 Lo Nibble

Byte 20 Byte 21 Byte 22 Byte 23 Byte 24

Green
 Hi Nibble

Green
 Lo

Nibble

Red
 Hi

Nibble

Red
 Lo

Nibble

Line
Weight

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

"Draw"Fill
Rectangle
Primitive

0xDB Pnt 1 X
Hi Byte

Hi
Nibble

Pnt 1 X
Hi Byte

Lo
Nibble

Pnt 1 X
Lo Byte

Hi
Nibble

Pnt 1 X
Lo Byte

Lo
Nibble

Pnt 1 Y
Hi Byte

Hi
Nibble

Pnt 1 Y
Hi Byte

Lo
Nibble

Pnt
1 Y
Lo

Byte
Hi

Nibble

Pnt 1 Y
Lo Byte

Lo Nibble

Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte
18

Byte 19

Delta X
Hi Byte

Hi Nibble

Delta X
Hi Byte

Lo
Nibble

Delta X
Lo Byte

Hi
Nibble

Delta X
Lo Byte

Lo
Nibble

Delta Y
Hi Byte

Hi
Nibble

Delta Y
Hi Byte

Lo
Nibble

Delta Y
Lo Byte

Hi
Nibble

Delta Y
Lo Byte

Lo
Nibble

Blue
 Hi

Nibble

Blue
 Lo Nibble

Byte 20 Byte 21 Byte 22 Byte 23 Byte 24

Green
 Hi Nibble

Green
 Lo

Nibble

Red
 Hi

Nibble

Red
 Lo

Nibble

Line
Weight

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

Amulet
Response

0xEB Pnt 1 X
Hi Byte

Hi
Nibble

Pnt 1 X
Hi Byte

Lo
Nibble

Pnt 1 X
Lo Byte

Hi
Nibble

Pnt 1 X
Lo Byte

Lo
Nibble

Pnt 1 Y
Hi Byte

Hi
Nibble

Pnt 1 Y
Hi Byte

Lo
Nibble

Pnt
1 Y
Lo

Byte
Hi

Nibble

Pnt 1 Y
Lo Byte

Lo Nibble

Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte
18

Byte 19

Delta X
Hi Byte

Hi Nibble

Delta X
Hi Byte

Lo
Nibble

Delta X
Lo Byte

Hi
Nibble

Delta X
Lo Byte

Lo
Nibble

Delta Y
Hi Byte

Hi
Nibble

Delta Y
Hi Byte

Lo
Nibble

Delta Y
Lo Byte

Hi
Nibble

Delta Y
Lo Byte

Lo
Nibble

Blue
 Hi

Nibble

Blue
 Lo Nibble

Byte 20 Byte 21 Byte 22 Byte 23 Byte 24

Green
 Hi Nibble

Green
 Lo

Nibble

Red
 Hi

Nibble

Red
 Lo

Nibble

Line
Weight

RPC buffer

If a setup where the Amulet is always the slave is needed or desired, then up to six RPCs can be buffered in the
Amulet's Internal RAM. The external processor can request the contents of the RPC buffer by sending a "Get Internal
RAM RPC buffer" request (0xD4), followed by the RPC buffer flag byte (which is ASCII-ized like all data within the
Amulet protocol). The RPC buffer flag byte options are 0x00:send all RPCs from buffer, then flush. 0xFF:flush RPC buffer.
When the Amulet is the master and an RPC is invoked, the Amulet will immediately send out the RPC command. If
the Amulet is setup to use the Internal RAM RPC buffer instead, then the Amulet will send the RPC to an RPC buffer.
The RPC buffer can only be read by an external processor by sending a "Get Internal RAM RPC buffer" request (0xD4).
The Amulet will respond with all the RPCs (up to six) stored in the RPC buffer, and then a null termination character, to
signify the end of the buffer. After sending out the contents of the RPC buffer, the Amulet will flush the buffer.

Software handshaking using a modified XON/XOFF protocol

In a system where the Amulet is the slave, it is possible to send a number of master messages in a row without waiting
for a response from the Amulet. This becomes an important point when there are a large number of messages that
need to be sent to the Amulet in a short period of time. If the Amulet is set to respond to every master message, like
it will by default, or if you have setup the Amulet to respond with an ACK by using the SlaveAckRsp, only the last sent
message will be responded to. So, if you send over 30 master messages packed together as a single stream of bytes,
only one response message or ACK will be returned from the Amulet.

One of the problems of this technique is that the Amulet has a 0x1000-byte receive buffer which can be filled to
capacity if too many bytes are sent to the Amulet. To counter this problem, we've created a modified form of the XON/
XOFF software handshaking protocol. In order to use the Amulet XON/XOFF protocol, you should probably use the
Communications Setting SlaveNoRsp so that the Amulet will not respond to any master messages that do not require
a response. Whenever the Amulet receives an XOFF command (0x13) it will respond with an XON command (0x11).
So, to safely use the software handshaking, you should send a number of messages which will be less than 0x1000
bytes in length, then terminate the stream of bytes with an XOFF command. Do not send any further commands until
the Amulet has responded with the XON command. At that point, you can be assured that all the previous commands
have been acted upon and the receive buffer is completely empty, thus allowing for another large string of bytes, up to
0x1000.

This raises the question, why not just use SlaveAckRsp and wait for the ACK. In a perfect world, that would work
perfectly fine. Unfortunately, when talking about serial communications, it is folly to believe that everything will be
perfect. If there is a slight delay in between messages, it is possible for the Amulet to sneak an ACK out before the
entire master stream of bytes is completely done. This could result in the master seeing the ACK, and depending on
how/when the code decides to look at the incoming messages, incorrectly assuming that the ACK was in response
to the last individual message of the stream. This could result in the master starting to send another large stream of
bytes. That might or might not be a problem. If the Amulet was able to finish parsing the final message of the stream,
then the receive buffer counters will be reset and the next stream will fit in the receive buffer, assuming the stream
is less than 0x1000 bytes. But, there could be a race condition where the Amulet doesn't quite finish parsing the final
message of the stream before the master starts sending the new stream. This could result in entire streams being lost.
Once again, that is not acceptable in most applications.

Therefore, if you are sending large streams to the Amulet, it is highly suggested that you use the SlaveNoRsp Meta
attribute and also send an XOFF command at the conclusion of your stream. Do not send your next stream until the
Amulet returns an XON command. This will close any race condition windows.

Jump to specific page

It is possible to send a Master Message to the Amulet which will force it to jump to a specific page within the project.
The page number is an internal 16-bit number that the GEMstudio compiler generates. All pages and images are
assigned an internal number which can be determined by looking at the Amulet link map. When this message is
received by the Amulet, it will react as if the fileNumber(x) was launched, meaning the Amulet will jump directly to the
page specified by the 16-bit internal number. You must NOT jump directly to an image file number, it must be a valid
page. If you do errantly jump to a non-valid page, the Amulet OS will respond with a soft reset. This will act exactly as if
the reset button was pressed.

The message structure is different than all other ASCII commands. This message is NOT in ASCII. The first two bytes for
jumping to a specific page are always 0xA0, 0x02. The next byte is the MSByte of the internal number and the following
byte is the LSByte of the internal number. The final byte is the checksum byte, which when added to the first four bytes,
should result with the LSByte of the sum being equal to 0x00.

Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Jump To Page
Command

0xA0 0x02 Page Index
MSByte

Page Index
LSByte

0x100 -
Checksum

LS Byte

Examples:

To jump to page 0x25:
0xA0,0x02,0x00,0x25,0x39
Notice that 0xA0+0x02+0x00+0x25+0x39 = 0x0100. LSByte of sum is 0x00.
To jump to page 0xF0:
0xA0,0x02,0x00,0xF0,0x6E
Notice that 0xA0+0x02+0x00+0xF0+0x6E = 0x200. LSByte of sum is 0x00.

Soft Reset

It is possible to send a Master Message to the Amulet which will force it to perform a soft reset. It will react exactly as if
the reset button was pressed.
The message structure is similar to the Jump To Page command. This message is NOT in ASCII. The first four bytes are
0xA0, 0x02, 0xFF, 0xFF. The final byte is the checksum byte, which when added to the first four bytes, should result with
the LSByte of the sum being equal to 0x00. Given that, the entire five byte string is 0xA0, 0x02, 0xFF, 0xFF, 0x60.
Example:

To cause a soft reset:
0xA0,0x02,0xFF,0xFF,0x60
Notice that 0xA0+0x02+0xFF+0xFF+0x60 = 0x0300. LSByte of sum is 0x00.

Flow Diagram Example

The flow diagram in the table below depicts a sample ASCII communications session between the Amulet
LCD module and an external processor. This sample is setup as a dual master system, with both the Amulet and the
external processor sharing the responsibility of being the master. It is possible to have a system where only the Amulet
is the master, only the external processor is the master, or as in this case, a dual master setup.
The variables used in this example have the following values:

External processor's byte variable 01 = 0x38
External processor's string variable 01 = "Abc"
External processor's word variable 03 = 0x10E8

Amulet Internal RAM byte variable 0xF4 = 0xA8
Amulet Internal RAM word variable 0x76 = 0x0000
Amulet Internal RAM RPC buffer = 0x52 only
Following the communication session, the following has occurred:
External processor's byte variable 01 = 0xFE
External processor performs user-defined RPC 02. (There are no reserved RPC #'s, so all 256 RPC's can perform any
desired function on your processor.)
Amulet Internal RAM word variable 0x76 = 0x02c9
Amulet Internal RAM RPC buffer = empty

Amulet LCD Module Dir. External Processor Description

 0xD0 0x30 0x31
 '0' '1'

>> Get byte
variable 1

 << 0xE0 0x30 0x31 0x33 0x38
 '0' '1' '3' '8'

 Return byte
of byte var 1

 0xD2 0x30 0x31
 '0' '1'

>> Get string
variable 1

 << 0xE2 0x30 0x31 0x41 0x62 0x63 0x00
 '0' '1' 'A' 'b' 'c'

 Return string
of string var 1

 0xD5 0x30 0x31 0x46 0x45
 '0' '1' 'F' 'E'

>> Set byte
variable 1 to 0xFE

 << 0xE5 0x30 0x31 0x46 0x45
 '0' '1' 'F' 'E'

 Confirm set
byte variable 1

 0xD8 0x30 0x32
 '0' '2'

>> Invoke RPC2
(User-defined)

 << 0xE8 0x30 0x32
 '0' '2'

 Confirm
invoke RPC2

 0xD1 0x30 0x33
 '0' '3'

>> Get word
variable 3

 << 0xE1 0x30 0x33 0x31 0x30 0x45 0x38
 '0' '3' '1' '0' 'E' '8

 Return word
of word var 3

 0xD0 0x30 0x34
 '0' '4'

>> Get byte
variable 4

 (not on server)*

 << 0xF0 Acknowledge
(no data)

 << 0xD0 0x46 0x34
 'F' '4'

 Get Internal
RAM byte
var 0xF4

 0xE0 0x46 0x34 0x41 0x38
 'F' '4' 'A' '8'

>> Return byte of
IR byte var 0xF4

 << 0xD6 0x37 0x36 0x30 0x32 0x43 0x39
 '7' '6' '0' '2' 'C' '9'

 Set IR word
var 0x76

 0xE6 0x37 0x36 0x30 0x32 0x43 0x39
 '7' '6' '0' '2' 'C' '9'

>> Confrim setting
of IR word
 var 0x76

 << 0xD4 0x30 0x30
 '0' '0'

 Get Internal
RAM RPCs

 0xE4 0x30 0x30 0x35 0x32 0x00
 '0' '0' '5' '2'

>> Return
IR RPC buffer

 (null
terminated)

*NOTE: If master requests an invalid variable or RPC, the slave should respond with an acknowledgment (0xF0).

Summary of Amulet ASCII protocol

Command
Opcode

Response
Opcode

Description Command Can Be
Sent by Amulet

Command Can
Be Sent by

External Processor

0xD0 0xE0 Get byte variable X X

0xD1 0xE1 Get word variable X X

0xD2 0xE2 Get string variable X X

0xD3 0xE3 Get label variable X

0xD4 0xE4 Get RPC buffer X

0xD5 0xE5 Set byte variable X X

0xD6 0xE6 Set word variable X X

0xD7 0xE7 Set string variable X X

0xD8 0xE8 Invoke RPC X

0xD9 0xE9 Draw Line X

0xDA 0xEA Draw Rectangle X

0xDB 0xEB Draw Filled Rectangle X

0xDC 0xEC Draw Pixel X

0xDD 0xED Get byte variable array X

0xDE 0xEE Get word variable array X

0xDF 0xEF Set byte variable array X

 0xF0 Acknowledgment (ACK) X X

 0xF1 Negative Acknowledgment (NAK) X

0xF2 0xF3 Set word variable array X

0xF4 0xF5 Get Color variable X

0xF6 0xF7 Set Color variable X X

UTF-8

Sending strings to the Amulet which contain characters between 0x80-0xFFFF

When sending strings to the Amulet, all characters from 0x20-0x7F are valid. The Amulet protocol expects any
characters above 0x7F to be in the UTF-8 format. See the documentation on UTF-8 below. In order for the Amulet to
display characters over 0x7F, the font used to display these characters must have those characters explicitely defined
in the .auf font file. By default, only the characters 0x20-0x7F are saved in the .auf file, but in the Amulet GEM Font
Converter, you can optionally save all the characters up to 0xFFFF.

UTF-8

UTF-8 (8-bit Unicode Transformation Format) is a variable-length character encoding for Unicode. Like UTF-16 and
UTF-32, UTF-8 can represent every character in the Unicode character set, but unlike them it has the special property
of being backwards-compatible with ASCII.

UTF-8 encodes each character (code point) in 1 to 4 octets (8-bit bytes). The first 128 characters of the Unicode
character set (which correspond directly to the ASCII) use a single octet with the same binary value as in ASCII.
The UTF-8 encoding is variable-width, with each character represented by 1 to 4 bytes. Each byte has 0–4 leading
consecutive '1' bits followed by a '0' bit to indicate its type. 2 or more '1' bits indicates the first byte in a sequence
of that many bytes. The scalar value of the Unicode code point is the concatenation of the non-control bits. In this
table, zeros and ones in black represent control bits, each x represents one of the lowest 8 bits of the Unicode value, y
represents the next higher 8 bits, and z represents the bits higher than that.

Unicode range

Hex Binary

Encoded Bytes Example

U+0000
to
U+007F

00000000 to
01111111

0xxxxxxx '$' U+0024
= 00100100
→ 00100100
→ 0x24

U+0080
to
U+07FF

00000000 10000000
to
00000111 11111111

110yyyxx
10xxxxxx

'¢' U+00A2
= 00000000 10100010
→ 11000010 10100010

→ 0xC2 0xA2

U+0800
to
U+FFFF

00001000 00000000
to
11111111 11111111

1110yyyy
10yyyyxx
10xxxxxx

'€' U+20AC
= 00100000 10101100
→ 11100010 10000010
10101100
→ 0xE2 0x82 0xAC

So the first 128 characters (US-ASCII) need one byte. The next 1,920 characters need two bytes to encode. This includes
Latin letters with diacritics and characters from Greek, Cyrillic, Coptic, Armenian, Hebrew, Arabic, Syriac and Tana
alphabets. Three bytes are needed for the rest of the Basic Multilingual Plane (which contains virtually all characters
in common use). Four bytes are needed for characters in the other planes of Unicode, which include less common CJK
characters and various historic scripts.

With these restrictions, bytes in a UTF-8 sequence have the following meanings. The ones marked in red can never
appear in a legal UTF-8 sequence. The ones in green are represented in a single byte. The ones in blue must only
appear as the first byte in a multi-byte sequence, and the ones in orange can only appear as the second or later byte in
a multi-byte sequence:

UTF-8 byte range

Binary Hex Decimal

Interpretation

00000000-0111111100-7F0-127 Single-byte encoding (compatible with US-ASCII)

10000000-1011111180-BF128-191 Second, third, or fourth byte of a multi-byte sequence

11000000-11000001C0-C1192-193 Overlong encoding: start of 2-byte sequence, but would
encode a code point ≤ 127

11000010-11011111C2-DF194-223 Start of 2-byte sequence

11100000-11101111E0-EF224-239 Start of 3-byte sequence

11110000-11110100F0-F4240-244 Start of 4-byte sequence (including invalid codepoints
between 110000 and 13FFFF)

11110101-11110111F5-F7245-247 Restricted by RFC 3629: start of 4-byte sequence for
codepoint above 10FFFF (actually, starts at 140000)

11111000-11111011F8-FB248-251 Restricted by RFC 3629: start of 5-byte sequence

11111100-11111101FC-FD252-253 Restricted by RFC 3629: start of 6-byte sequence

11111110-11111111FE-FF254-255 Invalid: not defined by original UTF-8 specification

Dual Master Collisions
In a dual-master system, it is possible that both masters will choose to send a message out at the same time. If the
Amulet sees an incoming master message coming from the external processor while it is in the process of sending a
master message of its own, it will finish sending its master message and then immediately respond to the incoming
message, assuming it is a valid message. After completely responding to the master message, the Amulet will then

http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629

wait for a response to its own master message. If the host does not respond to the Amulet message, the Amulet will
timeout and resend its own master message again.

Sending Master Messages Between Amulet Page Changes

When the Amulet changes from one page to another, all UART buffers are flushed, so if you are in the middle of
sending the Amulet a Master Message while it is changing pages, it is possible that the Amulet will not fully receive
your message. Another thing to keep in mind is that when first loading a page, the transmission of messages is halted
until the page is fully rendered. The Amulet is capable of buffering incoming messages, but it will not process or
respond to any incoming messages until the page is fully rendered. It can take over 500ms for some complex pages
to be fully rendered, so if you were to send a Master Message at the beginning of a page change, the Amulet might
not respond back for a while. If the Amulet does respond, it will have performed the request, albeit maybe not exactly
when you thought it should.

With the above in mind, if your processor pounds Master Messages out at a rapid rate, you might want to have all your
pages start out by sending an RPC, set byte or byteOut command that lets your processor know when it is okay to start
transmitting again. You could also have an RPC, set byte or byteOut command go out prior to leaving any page, so your
processor will know when to halt transmissions as well.

Font Style Escape
Sending strings to the Amulet which contain the font style escape byte

To change the font style, size, color, or the font itself in a UART string, see Using Amulet Formatted Text for formatting
options. The same formatting used within GEMstudio works exactly the same on UART strings.

Sending A Single Byte Without A Response

When it is desired to send a single byte out the UART or USB without regard to the Amulet protocol, then the href
command to use is port.byteOut(x), where x is a raw byte to send out and port is uart0, uart1, oart2(if applicable) or
USB. By default, x is a decimal number, but if a hexadecimal number is desired, precede the byte with 0x to specify a
hexadecimal number. For instance, to send out a single 0x3D out uart0, use the following: uart0.byteOut(0x3D).

To send out a single ASCII character, use single quotes around the ASCII character. For instance, to send out an equals
sign, use the following: uart0.byteOut('=').

Note that both uart0.byteOut(0x3D) and uart0.byteOut('=') will send out the same 0x3D since the ASCII
representation of the equals sign is 0x3D.

When the byteOut command is used, it is not part of the Amulet protocol, which means there are no header bytes
and the data is not ASCII-ized for you. The byte you want to be sent out is what will be transmitted, nothing more and
nothing less. This is a unidirectional message, meaning that the byte will be sent out, but it will not be expecting, nor
accepting, any responses.

Sending A Stream Of Bytes Without A Response

To send a stream of raw bytes out the UART or USB can be accomplished by calling multiple port.byteOut() functions
separated by commas, but that is not the most efficient way. The href command port.streamOut(x1+x2+...xn) will
send out the stream of bytes without any formatting. Notice that each byte is separated by a plus sign (+). Like the
byteOut command, it is not part of the Amulet protocol, so the message will be sent out, but it will not be expecting,
nor accepting, any responses. The bytes to be sent out are by default decimal. If hexadecimal numbers are desired,
precede the numbers with 0x. For instance, to send out a stream on uart0 consisting of 0x01, 0x11, 0x22, 0x33, use the
following:

uart0.streamOut(0x01+0x11+0x22+0x33)

As is the case with the byteOut() function call, the Amulet OS is not expecting, nor accepting, any responses to the
streamOut() function call.

Sending A String Of Bytes Without A Response

To send a stream of raw bytes out one of the communication ports can be accomplished by calling multiple
port.byteOut() functions separated by commas, but that is not the most efficient way. The href command
UART.stringOut('string') or USB.stringOut('string') will send out the string of bytes without any formatting and it will
not send out the null termination character. You can also use InternalRAM string variables as strings to be sent out. For
instance, to send out uart0 the value of InternalRAM.string(0), use the following:

uart0.stringOut(InternalRAM.string(0))

If it is desired to send out an ASCII string, that can be accomplished by entering a string that is enclosed by either single
or double quotes. (Please see the section on entering strings for more information) For example, to send a string out
uart0 that says "123 ABC", use the following:

uart0.stringOut('123 ABC')

One thing to note is that the ASCII string that is sent out is not null terminated. If a null termination character is
required, then you can enter an port.byteOut(0x00) immediately following the streamOut() function call, separated by
a comma, such as:

uart0.stringOut('123 ABC'),uart0.byteOut(0x00)

As is the case with the byteOut() function call, the Amulet OS is not expecting, nor accepting, any responses to the
stringOut() function call.

Customizing the Amulet protocol command opcodes

By default, the Amulet protocol uses the Command and Response Opcodes specified in this document. You can
customize the Command and Response Opcodes at compile time by including a customization file in your project. The
customization file must have an "ini" extension and must reside in the same directory as your GUI project. You must
include the customization file in a META tag in the home page of your project. The syntax to include the file is:

<META NAME="initCommands" SRC="filename.ini">

The customization file, filename, must have a .ini extension and it must be located in the same directory as your .gemp
file. Inside the customization file, any line preceded with // is treated as a comment. All customizations must be located
in the far left column, so do not tab over. The GEMcompiler recognizes both decimal and hexadecimal numbers.

The default file, called defaultCommands.ini is located in the %AllUsersProfile%\AmuletTech\Global\Configuration
\Protocol folder. If the above META tag is not specified, defaultCommands.ini is used as the opcode definition file.
If you are going to make a customization file, you should copy the defaultCommands.ini and place it in the same
directory as your .gemp file. The file can be renamed as long as it retains the .ini extension. The values of the opcodes

can be changed to practically any single byte value between (1-254)*. All the names of the opcodes can be cross-
referenced with the list below. The opcode names are self documenting.

*There are three opcodes that are off limits. They are 0x00, 0xA0 and 0xFF. These must not be used to customize any of
the Command or Response Opcodes.
Note: For users who don't want to change the opcodes from an earlier version of Amulet software, we have included
origCommands.ini in the %AllUsersProfile%\AmuletTech\Global\Configuration\Protocol folder. Copy origCommands.ini
into your projects main directory and use the initCommands META with origCommands.ini as your SRC file.

amulet-widgets.html#stringVariables

Serial Terminal

Docklight is a testing, analysis and simulation tools for serial communication protocols. You can easily set it up to reply
to Amulet protocol commands.

With the permission of Docklight, Amulet has provided a link to Docklight here which you can install separate from
GEMstudio. The Scripting version is useful for calculating CRCs on the fly for dynamic messages. The base version is
useful for ASCII protocol or static CRC messages where you calculate the CRC yourself.

By installing Docklight, you adhere to the End User License Agreement set forth by Docklight during the install.
If you would like to purchase the full version of Docklight, you can do so by going to Docklight's web site, http://
www.docklight.de

Amulet Bitmap Format

All images stored within the Amulet embedded flash are saved in an Amulet proprietary format. Most images are
compressed when saved, but when dealing with Dynamic Image Widgets, the GEMcompiler leaves the canvas image
uncompressed. When an external processor sends a new image serially to the Amulet, the Amulet replaces the
existing image stored in the embedded flash with the incoming image. To keep from overwriting other files within the
embedded flash, the image to be sent to the Amulet must be the exact same dimensions as the canvas image.

The Amulet Bitmap Format is slightly different between the standard Amulet modules and the Amulet High
Performance modules

Standard Module

The Standard module's first 24 bytes of the new image to be sent to the Amulet must be identical to the first 24 bytes
of the original canvas image of the Dynamic Image Widget. The first 24 bytes can be found in the .inc file generated by
the GEMstudio, located in a generated MAP folder in the same directory as your specific project.

The first 12 bytes of an Amulet file are the flash header bytes. The next 12 bytes are all image file specific.

byte 1 - 12: Amulet flash header bytes.
byte 13: # of rows, in pixels. (LSByte)
byte 14: # of rows, in pixels. (MSByte)
byte 15: # of columns, in pixels. (LSByte)
byte 16: # of columns, in pixels. (MSByte)
byte 17: image format.
byte 18: valid image key (0xA5)
byte 19-20: transparency flag and bytes per row
byte 21-24: transparency bytes

CRC

The final two bytes of the image file must be a CRC of the entire file, using a seed of 0x00 and a polynomial of 0x1021.
Sample code for the CRC algorithm used on Amulet image files:
#define CRC_SEED 0x0000
#define CRC_POLY 0x1021
int calcCRC(char *ptr, int count)
{
 unsigned short crc = CRC_SEED; // initialize CRC
 int i;

 while (count-- > 0)
 {

http://docklight.de/downloads/
http://www.docklight.de/
http://www.docklight.de/

 crc = crc ^ *ptr++;
 for (i=8; i>0; i--)
 {
 if (crc & 0x0001)
 crc = (crc >> 1) ^ CRC_POLY;
 else
 crc >>= 1;
 }
 }
 return crc;

 }

High Performance Module

The High Performance Module's first 20 bytes of the new image to be sent to the Amulet must be identical to the first
20 bytes of the original canvas image of the Dynamic Image Widget. The first 20 bytes can be found in the .inc file
generated by the GEMstudio, located in a generated MAP folder in the same directory as your specific project.

The first 8 bytes of an Amulet file are the flash header bytes. The next 12 bytes are all image file specific.

byte 1 - 8: Amulet flash header bytes.
byte 9: # of rows, in pixels. (LSByte)
byte 10: # of rows, in pixels. (MSByte)
byte 11: # of columns, in pixels. (LSByte)
byte 12: # of columns, in pixels. (MSByte)
byte 13: image format.
byte 14: valid image key (0xA5)
byte 15-16: transparency flag and bytes per row
byte 17-20: transparency bytes

Amulet Link Map

After any project is compiled either via Run or Program, GEMstudio generates a link map for the specific project. The
name of the link map has the same name as the project name, except it has a .inc extension. The .inc file is created in
the the "MAP" folder, which is created in the same directory as the compiled project.
The .inc file is an unformatted text file which can be read by any standard text editor. The .inc file includes the name
of each file in the given project. It is setup so a standard C compiler can use the .inc file as an include file, because all
comments are bracketed by /* and */ and the definitions are all preceded by #define. This was chosen so the .inc file
could be directly included in a C or Java project. If you are using a different programming language, you might have to
modify or extract the information that you need to appease your compiler.

Sample .inc file

The following is from an actual .inc file.

/* File Name File Index */
/* --------- ----------- */
#define Page_1 0x20 /* File Size = 0x19E */
/* downarrow.gif 0x21 /* File Size = 0x34E */
/* uparrow.gif 0x22 /* File Size = 0x34E */
/* downarrowAlt.gif 0x23 /* File Size = 0x34E */
/* uparrowAlt.gif 0x24 /* File Size = 0x34E */
#define Page_2 0x25 /* File Size = 0x19E */
/* fonthdr.auf 0xF /* File Size = 0x28 */
/* internalram.bin 0x6 /* File Size = 0x214E */
/* lcdconfigproject.bin 0x3 /* File Size = 0xB6 */

fileNumber(x)

Following the File Name is the File Index in hexadecimal format. This is the internal file number that the GEMcompiler
assigns to each file. This number can be used to hyperlink directly to a given page within the project by using the
fileNumber(x) function, where x is the File Index number. Any Control Object/Widget could use fileNumber(x) as its
href function.

The fileNumber(x) function works exactly the same as if you entered just a File Name. Using the above .map file, the
HREF:

Page_1.open()
is equal to:

fileNumber(0x20)

internal.fileNumber.value()

The internal.fileNumber.value() function returns the value of the file index number of the given page. Any View Widget
that expects a word value can use the internal.fileNumber.value() function. Using the above .map file again, a View
Widget in Page_1 could have an href function that looks like:

internal.fileNumber.value()

The above function would return a word value of 0x20

One way to use the internal.fileNumber.value() function is to have each page within a project have a couple of METAs
that looks like:

<META HTTP-EQUIV="Refresh"
CONTENT="0,0.01;URL=nop();ONVAR=internal.fileNumber.value();value=InternalRAM.word(0xFF)">

<META HTTP-EQUIV="Refresh" CONTENT="0,0.02 URL=uart0.word(0xFF).setValue(InternalRAM.word(0xFF))">

The first META loads InternalRAM word variable #0xFF with the file index number of the given page. Just a note on why
this saves the file index number to InternalRAM word variable #0xFF: META's by their nature, will hold data in their own
memory space, not in InternalRAM, but this can be changed by using the value attribute in the META and specifying a
specific Internal RAM variable. In this case, we set the value to InternalRAM.word(0xFF), so instead of saving its value in
its own memory space, it now saves its value in Internal RAM word variable # 0xFF.

The second META then sends out a setWord command out uart0, setting external word variable #0xFF to the value of
Internal RAM word variable #0xFF, which was just loaded with the file index number of the given page. Notice that the
second META is launched 10ms after the first one. This allows for the updating of Internal RAM word variable #0xFF.
Using the above .inc file again, if these two METAs were in Page_1.htm, they would be the equivalent to the following
META:

<META HTTP-EQUIV="Refresh" CONTENT="0,0.02;URL=uart0.word(0xFF).setValue(0x20)">

Image Files

All image files are each saved in thier own file on the Amulet system, and as thus, are included in the .inc file. Do NOT
try to use fileNumber(x) where x is the File Index to an image file. The Amulet could crash and for serial dataflash based
products it could potentially trash the OS in the serial data flash, requiring a reloading of the Amulet OS files.

Any image which is not compressed will also have the first 12-bytes of the File Header stored in the .inc file. The File
Header bytes are needed when using the Dynamic Image Widget. Any image used as a Dynamic Image canvas will not
be compressed. Images can be sent to the Amulet via xmodem crc protocol which will overwrite the canvas image of

a Dynamic Image Widget. Only images which are the exact same dimensions as the canvas image can be sent to the
Dynamic Image Widget. The 12-byte File Header for any image sent to the Dynamic Image Widget must be the same as
the original image used for the Dynamic Image canvas. The first 12 bytes are created by the GEMcompiler and cannot
be derived, thus the need for inclusion in the link map. The last 12 bytes are part of the Amulet Bitmap Format and can
be derived, but are included in the link map for cross checking purposes.

The File Header bytes are all hexadecimal numbers. The "0x" was left off for the sake of brevity.

Macro Preprocessor

The Amulet macro preprocessor allows you to create macros which are used to make textual substitution throughout
the project. The macros are defined in a text file with a .macro extention, which is included in your project by choosing
a macro file within the Misc. tab in the Project Settings dialog. Almost all text within the project will be scanned by the
Amulet macro preprocessor and text substitutions will be made. The only exception is the Amulet defined parameters,
such as the names of widget parameters like Font, Href, etc. All other text, including static text strings, will be scanned
by the macro preprocessor and substitutions will occur when an exact match to the macro definition is found. Macro
expansion occurs at compile time within the compiler.

The Amulet macro preprocessor is case sensitive. To be considered an exact match, the macro name must be found in
the scanned string and must be surrounded by word separators. The following are considered word separators:

.?!,;:()="
and
start of string, end of string, and spaces.

Note: is NOT considered a space, so if it is desired to use the literal macro name within the project, it can be
either preceded or followed by a which ends up looking on the Amulet LCD as a regular space. Another option
is to precede or follow the literal variable name with a which puts in a space holder that the Amulet doesn't
display.

Because the preprocessor scans all the text in your project, it is advised to use macro names that will not show up
normally. We suggest starting all of your macro names with an uncommon character, like % or #. Another common
practice is to bracket the macro name with %, such as %macro%. This will serve two purposes. One, it makes it easy
to see your macros when looking at your code. Two, you won't have to worry about having the preprocessor do a text
substitution when you didn't really mean it. The Amulet macro preprocessor is very flexible, though, so you are not
required to use any special characters, but care should be taken in the naming of macros.

Enabling the Preprocessor:

By default, the preprocessor is not enabled. You can enable the preprocessor by specifying an include file. To do so,
open the project settings, choose on the Miscellaneous tab, and select "Browse...". The open file dialog will appear.
Navigate to your .macro file and select Open.

Macro Definition file

Click Browse... to add or change a file. Click Remove to not use any file.

Defining macros:

All macros must start with #define, followed by white space, then the macro name, more white space, then the textual
substitution. Neither the macro name nor the textual substitution are allowed to have any white space within it. White
space is considered either spaces or tabs. Inside the include file, any text to the right of the comment characters // is
treated as a comment. It is okay to have a comment on the same line as the macro definition.
As an example, the syntax is as follows:

#define macroName textSubstitution

Where:

 #define specifies the creation of a macro.

 macroName is the name of the macro.

 textSubstitution is the text which will replace the macro name.

Examples:
#define %hour% uart0.byte(0)// Comment goes here.
#define %getHour %hour%.value() // expands to uart0.byte(0).value()
#define *year word(3)
#define +counter 7 // Comment goes here.

As you can see from the examples above, it is legal to use macros to define other macros. Forward references are
allowed. For example, both of the following are legal:
#define %getCnt %cnt.value() // forward reference to %cnt is okay!
#define %cnt InternalRAM.byte()
as well as
#define %cnt InternalRAM.byte()
#define %getCnt %cnt.value()

Using macros to initialize InternalRAM:

A powerful feature of the preprocessor is that it enables you to use defined macros anywhere in the project, including
in the initialization of Internal RAM variables. For example, to initialize an Internal RAM byte variable referenced by the
macro %counter to a value of 16, you would use the following nomenclature in the Internal RAM initialization file:

InternalRAM.byte(%counter) = 16

You can also use a macro as the value of an InternalRAM variable as well. For example:

InternalRAM.byte(%counter) = %time

Utilization of SD Card

Some modules include a Micro SD card slot that can be utilized. The Micro SD card can be used as a data logger by using
GEMscript's file I/O functions. The Micro SD card can also be used to program the onboard embedded flash.

Data Logging

The SD Card slot can be used to retrieve and store text files. This is particularly useful for data logging to capture the long
term performance of a system. The building blocks to design a data logging system are in the GEMscript File I/O API. You
can find them under the separate help file, accessed in GEMstudio through Help->GEMscript API

Software Programming
(Available on High Performance only)

The Micro SD card slot can be used to program the onboard embedded flash. This can be used at development time or out
in the field for upgrades.

In order to use the Micro SD card as a programmer, the GEMstudio project must first be saved as either a .pdb Production
File or .pdb Update File. Production Files include the project files as well as all the OS files required to run the project.
Update Files can be saved with or without the OS files, but they do not overwrite a touchpanel calibration. Only .pdb
Production/Update Files can be used for Micro SD card programming, .gem files cannot be used for this purpose.

The .pdb Production/Update File needs to be placed in the root directory of the Micro SD card. In order to start the
programming sequence, the Micro SD card needs to be placed into the Micro SD card slot and then either the power needs
to be cycled or the reset button needs to be pressed. Upon restart, the .pdb file will be read and the onboard embedded
flash will be programmed with the new files. Once the programming is finished, the .pdb file will be deleted from the Micro
SD card unless the .pdb file's attributes are set to Read Only.

If the .pdb file's attributes are set to Read Only, it will not be deleted after programming. This is handy if it is desired
to program multiple modules with a single Micro SD card since it won't be necessary to reload the .pdb file between

programming sessions, but is probably not desirable if the Micro SD card will be kept in the module. If the Micro SD card is
left in the slot, the Amulet module will go through the programming cycle upon every reset or power cycle.

While the Amulet module is programming via .pdb file, the Graphics Display Card's red LED will toggle after each file is
programmed and the boot logo will travel from the upper left hand corner down to the center of the display. When the
programming is finished, the Graphics Display Card's red LED will stay off, the green LED will stay on, and the LCD will start
displaying the newly programmed project.

Appendix A - UART Code examples

Below you will find implementations of the Amulet ASCII protocol written in C, BASIC, and assembly. Please note
that these code snippets are presented here to illustrate the workings of the protocol, not serve as a model
implementation.

C Source Code
/**
*MAIN ROUTINE - initializes RingBuffer and sets the baud to 9600, then
*stays in an infinite loop polling the serial line to see if anything
*has been received, and then handling the byte received.
*NOTE: the serIn() function simply checks the serial line to see if
*anything is there, if not it returns
***/
int main()
{
 rbInit(buffer);
 setbaud(BAUD9600);
 while(1)
 {
 serIn(&buffer);
 }
 return(0);
}

/**
*Checks to see if anything is waiting on the serial line to be handled,
*if so, it puts it at the end of the Ringbuffer, otherwise it does nothing
*and returns
**/
void serIn(RingBuf *buf)
{
 if ((SCSR & RDRF) != 0)
 {
 tail = buf->tail;
 buf->serData[tail++] = SCDR;
 buf->tail = (tail & RB_SIZE_MASK);
 parseSerial();
 }
}

/***
*This function acts as the byte handler to the bytes that serIn() puts
*in the Ringbuffer. Checks to see if valid request type has been
*received and then sets server response value. Using a standard state
*machine, the program proceeds to set variables to hold the values of
*the next byte received on the serial lines and when the correct number

*of bytes have been received (3 bytes for all request types except
*setByte which needs 5 bytes) later calls functions that put the
*variables back out on the serial line for output
***/
void parseSerial(void)
{
 static char caseType;
 newByte = byteFromBuf(&buffer);
 if((newByte >= 0xD0) && (newByte {
 serverResp = respMake(newByte);
 caseType = serverResp;
 }
 else if(state == 0)
 caseType = 0x00;
 if((state==0) && ((caseType >= 0xD0) && (caseType {
 state++;
 }
 else if(state == 1)
 {
 hiNib = newByte;
 state++;
 }
 else if(state == 2)
 {
 loNib = newByte;
 if(caseType == 0xD5)
 {
 state++;
 }
 else
 {
 state = 0;
 }
 switch(caseType)
 {
 case 0xD0:
 getByte();
 break;
 case 0xD1:
 getString();
 break;
 case 0xD2:
 getWord();
 break;
 case 0xD8:
 invokeRPC();
 break;
 }
 }
 else if((state == 3) && (caseType == 0xD5))
 {
 setValHi = newByte;
 state++;
 }
 else if(state == 4)
 {
 setValLo = newByte;

 state = 0;
 setByte();
 }
}

/*********************************
*Hex to ascii conversion routine
**********************************/
char hex2ascii(char hex)
{
 return ((hex < 0x0A) ? (hex + '0') : (hex + ('A' - 0x0A)));
}

/*********************************
*Ascii to hex conversion routine
**********************************/
char ascii2hex(char ascii)
{
 return((ascii }

/***
*Handler for a getByte function request
* Format of request string is three bytes => 0xD0 vH vL, where v = variable
being requested,
* vH is ASCII version of high nibble of v and vL is ASCII of low nibble of v.
* Returns five bytes => 0xE0 vH vL NH NL,
* where N = value of variable v (low byte),
* NH is ASCII version of high nibble of N and NL is ASCII of low nibble of N.
**/
void getByte(void)
{
 char index, byteValue, valueHiNib, valueLoNib;

 index = ascii2hex(hiNib) << 4;
 index |= ascii2hex(loNib);

 byteValue = byteData[index];

 valueHiNib = hex2ascii(byteValue >> 4);
 valueLoNib = hex2ascii(byteValue & 0x0f);

 putchar(serverResp);
 putchar(hiNib);
 putchar(loNib);
 putchar(valueHiNib);
 putchar(valueLoNib);
}

/**
*Handler for a getString function request
* Format of request string is three bytes => 0xD2 vH vL, where v = index of
string variable,
* vH is ASCII version of high nibble of v and vL is ASCII of low nibble of v.
* Returns variable number of byte: 0xE2 vH vL String+Null to client
*
* This routine is only looking to respond with one of two strings. Therefore, it

* is only looking at the least significant nibble of string variable index.
*
* Uses putchar from ICC C library to put individual characters onto serial line
***/
void getString(void)
{
 putchar(serverResp);
 putchar(hiNib);
 putchar(loNib);

 if(loNib == 0x30)
 {
 putstring(string1);
 }
 if(loNib == 0x31)
 {
 putstring(string2);
 }
}

/**
*Handler for a setByte function request
* Format of request string is five bytes => 0xD5 vH vL NH NL, where v = index of
byte variable,
* vH is ASCII version of high nibble of v and vL is ASCII of low nibble of v,
* N = value of variable v,
* NH is ASCII version of high nibble of N and NL is ASCII of low nibble of N.
* Returns five bytes => 0xE5 vH vL NH NL,
* where P vH vL NH NL are all duplicates of the bytes that were in the request
string.
***/
void setByte(void)
{
 char index, hexVal;

 index = ascii2hex(hiNib) << 4;
 index |= ascii2hex(loNib);

 hexVal = ascii2hex(setValHi) << 4;
 hexVal |= ascii2hex(setValLo);

 byteData[index] = hexVal;

 putchar(serverResp);
 putchar(hiNib);
 putchar(loNib);
 putchar(setValHi);
 putchar(setValLo);
}

/***
*Handler for a getWord function request
* Format of request string is three bytes => 0xD1 vH vL, where v = index of word
variable,
* vH is ASCII version of high nibble of v and vL is ASCII of low nibble of v.
* Returns seven bytes => 0xE1 vH vL PH PL NH NL,
* where P = value of variable v (high byte), N = value of variable v (low byte),

* PH is ASCII version of high nibble of P and PL is ASCII of low nibble of P,
* NH is ASCII version of high nibble of N and NL is ASCII of low nibble of N.
**/
void getWord(void)
{
 char index, valMSBhinib, valMSBlonib, valLSBhinib, valLSBlonib;
 unsigned int wordValue;

 index = ascii2hex(hiNib) << 4;
 index |= ascii2hex(loNib);

 wordValue = wordData[index];

 valMSBhinib = hex2ascii((char)((wordValue >> 12) & 0x0f));
 valMSBlonib = hex2ascii((char)((wordValue >> 8) & 0x0f));
 valLSBhinib = hex2ascii((char)((wordValue >> 4) & 0x0f));
 valLSBlonib = hex2ascii((char)(wordValue & 0x0f));

 putchar(serverResp);
 putchar(hiNib);
 putchar(loNib);
 putchar(valMSBhinib);
 putchar(valMSBlonib);
 putchar(valLSBhinib);
 putchar(valLSBlonib);
}

/***
*Handler for an invokeRPC function
* Format of request string is three bytes => 0xD8 rH rL, where r = index of RPC,
* rH is ASCII version of high nibble of r and rL is ASCII of low nibble of r.
* Returns three bytes => 0xD8 rH rL,
* where rH rL are duplicates of the bytes that were in the request string.
**/
void invokeRPC(void)
{
 char rpc, valMSBhinib, valMSBlonib, valLSBhinib, valLSBlonib;
 unsigned int wordValue;

 rpc = ascii2hex(hiNib) << 4;
 rpc |= ascii2hex(loNib);

 performRPC[rpc]; // this code could do any number of things based upon
 // which Remote Procedure Call is requested.

 putchar(serverResp);
 putchar(hiNib);
 putchar(loNib);
}

/***
*Function to take a byte out of the buffer
**/
char byteFromBuf(RingBuf *buf)
{
 char byte;
 head = buf->head;

 byte = buf->serData[head];
 buf->head = (head + 1) & RB_SIZE_MASK;

 return byte;
}

/

*Function to assign a serverResp value based on the byte taken out of the buffer
**/
char respMake(char byte)
{
 // Response is always 0x10 greater than the command opcode
 return (byte + 0x10);
}

/**
*Function to put a string onto the serial line
**/
void putstring(char *str)
{
 char iloop;
 char index = 0;
 char value;

 for(iloop=0; iloop {
 value = str[index];
 putchar(value);
 index++;
 }
}

Basic Source Code

The following BASIC source code was taken from actual server implementation
based on a Basic Stamp interfaced to an Analog Devices ADXL202EB accelerometer.
'***
'* The main loop of this code waits for valid Client Start of Message (CSOM)
characters then jumps to the appropriate
'* service routine
'***
incoming VAR byte(6) ' Incoming buffer
'**
' serin Rpin, Baudmode, [STR incoming\L\E]
' serin = receive asynchronous serial data
' Rpin = Rx (instruct BASIC Stamp to use dedicated serial-input pin)
' Baudmode = N9600 (9600 baud, 8-bit data, no-parity, true polarity)
' [STR amuletMsg\L\E] = receive string of length L or until end character E is
received into amuletMsg array
'
' The command serin Rx, N9600, [STR incoming\L\E]
' will poll the serial line looking for serial data up to length L or until end
character E is encountered.
' Incoming data will be stored in the amuletMsg array.
'**
serial_in:SERIN 16, 84, [RxType, VarType1, VarType2, SetVar1, SetVar2]

SERIN 16, 84, [STR incoming\6\0] '* Read a max of 6 bytes or stop when
received a null termination character
RxType = incoming(0)
VarType1 = incoming(1)
VarType2 = incoming(2)

IF RxType = $D5 THEN setByte 'asking for a setByte
IF RxType = $D0 THEN getByte 'asking for a getByte
IF RxType = $D2 THEN getString 'asking for a getString
IF RxType = $D1 THEN getWord 'asking for a getWord
IF RxType > $D5 THEN serial_in 'value on line is not a function, go back to
wait for
 'another command
'**
'* Handler for a getByte function request
'* Format of request string = 0xD0xx, where xx = variable being requested
'* Returns 0xE0xxNN, where NN equals the HEX data of the variable xx
'**
getByte:
 ServerResp1 = $E0
 IF VarType2 = "5" THEN RateReturn
 IF VarType2 = "6" THEN TimeReturn
 IF VarType2 = "7" THEN VariableReturn
 'Variable 5 is being requested so return value stored for rate (in register
B20)
 RateReturn:
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, HEX2 B20]
 GOTO serial_in

 'Variable 6 is being requested so return value stored for time (in register
B22)
 TimeReturn:
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, HEX2 B22]
 GOTO serial_in
 'Variable 7 is being requested so return value stored for variable (in
register B21)
 VariableReturn:
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, HEX2 B21]
 GOTO serial_in

'**
* Handler for a getString function request
'* Format of request string = 0xD2xx, where xx = index of string variable
'* Returns 0xE2xxString+Null to client
'* Returns requested data back to the screen
'**
getString:
 ServerResp1 = $E2
 IF VarType2 = "2" THEN Author_string
 IF VarType2 = "3" THEN Company_string
 Author_string:
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, "Jacob Horn", NULL]
 GOTO serial_in
 Company_string:
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, "Amulet Technologies",
 NULL]
 GOTO serial_in

'***
'* Handler for a setByte function request
'* Format of request string = 0xD5xxNN, where xx = variable to be set
'* and NN = HEX data
'* Returns 0xE5xxNN to client
'***
setByte:
 ServerResp1 = $E5

 IF VarType2 = "5" THEN Rate
 IF VarType2 = "6" THEN Time
 'Variable 5 has been called to be set
 Rate:
 'Choose which parameter associated with rate is to be set, using NN
values
 IF incoming(4) = "0" THEN one
 IF incoming(4) = "1" THEN two
 IF incoming(4) = "2" THEN five
 IF incoming(4) = "3" THEN ten
 one:
 B20 = 1
 GOTO setByteResp
 two:
 B20 = 2
 GOTO setByteResp
 five:
 B20 = 5
 GOTO setByteResp
 ten:
 B20 = 10
 GOTO setByteResp
 'Variable 6 has been called to be set
 Time:
 'Once again, choose which parameter is to be set using NN values
 IF incoming(4) = "0" THEN tenSeconds
 IF incoming(4) = "1" THEN thirtySeconds
 IF incoming(4) = "2" THEN fortyfiveSeconds
 IF incoming(4) = "3" THEN sixtySeconds
 tenSeconds:
 B22 = 10
 GOTO setByteResp
 thirtySeconds:
 B22 = 30
 GOTO setByteResp
 fortyfiveSeconds:
 B22 = 45
 GOTO setByteResp
 sixtySeconds:
 B22 = 60
 GOTO setByteResp
 setByteResp:
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, incoming(3),
incoming(4)]
 GOTO serial_in

'***

'* Handler for a getWord function request
'* Format of request string = 0xD1xx, where xx = variable being requested
'* Returns 0xE1xxPPNN, where PP = high byte of variable xx, and NN = low byte of
variable xx
'***
getWord:
 ServerResp1 = $E1
 IF VarType2 = "1" THEN YWORDvariable

 'Pulse X port pin, read, and save out x acceleration values
 PULSIN 4,1,xWord
 ServerResp2 = xWord.HIGHBYTE
 ServerResp3 = xWord.LOWBYTE

 'server data sent out over RS232 to client
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, HEX2 ServerResp2,
 HEX2 ServerResp3]
 GOTO serial_in

 YWORDvariable:
 PULSIN 2,1,yWord

 ServerResp2 = yWord.HIGHBYTE
 ServerResp3 = yWord.LOWBYTE
 SEROUT 16,84,[ServerResp1, VarType1, VarType2, HEX2 ServerResp2,
 HEX2 ServerResp3]
 GOTO serial_in
END

Assembly Source Code

The following assembly code snippets were taken from an actual server
implementation based on Atmel's AVR 8-bit RISC microcontroller (Part#
AT90LS4433).

;**
;Main loop of program. Waits for valid Client Start Of Message (CSOM)
;characters, then vectors to the appropriate service routine.
;**

.equ GetCommand = 0xD0
.equ GetResponse = 0xE0
.equ StringCommand = 0xD2
.equ StringResponse = 0xE2
.equ SetCommand = 0xD5
.equ SetResponse = 0xE5
.equ InvokeCommand = 0xD8
.equ InvokeResponse = 0xE8
try_again:
 rcall getch ;Go and wait until a character is present in the
buffer
 cpi buffer,GetCommand ;Is it a get command?
 brne is_it_S ;Not get command, so check others
 rjmp handleG
is_it_String:
 cpi buffer,StringCommand;Is it a string command?

 brne is_it_S ;Not string command, so check for set
 rjmp handleString
is_it_S:
 cpi buffer,SetCommand ;Is it a set command?
 brne is_it_I ;Not set command, so check for I
 rjmp handleS
is_it_I:
 cpi buffer,InvokeCommand ;Is it an invoke command?
 brne try_again ;Not a valid request so start over and wait for
next character
 rjmp handleI

;**
;Handle Get Byte command to get variable data
; Format of request string = 0xD0xx
; where xx = variable requested
; Returns 0xE0xxNN to client where NN = HEX data of variable (xx)
;**
handleG:
 rcall getByte ;Read both nibbles of xx and assemble into a
byte. Return in buffer.
 brcc try_again ;If carry cleared, then invalid value, so start
over
 mov which,buffer
 ldi buffer,GetResponse
 rcall putch ;Acknowledge valid command
 mov buffer,which
 swap buffer ;Rotate MSNibble into LSNibble position
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back MSNibble of variable (xx)
 mov buffer,which
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back LSNibble of variable (xx)
 rcall get_varH ;Go get data (msn) for variable (xx)
 rcall putch ;Transfer data to the client
 rcall get_varL ;Go get data (lsn) for variable (xx)
 rcall putch ;Transfer data to the client
 rjmp try_again ;Done with Get command so start over

;Handle String command to tx a string back.
; Format of request string = 0xD2xx
; where xx = index of string variable
; Returns 0xE2xxString+Null to host.
;**
handleString:
 rcall getByte ;Read both nibbles of xx and assemble into a
byte. Return in buffer.
 brcc try_again ;If carry cleared, then invalid value and start
over
 mov which,buffer
 ldi buffer,StringResponse
 rcall putch ;Acknowledge valid command
 mov buffer,which
 swap buffer ;Rotate MSNibble into LSNibble position
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back MSNibble of variable (xx)
 mov buffer,which

 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back LSNibble of variable (xx)

 ... ;To simplify this snippet, all the code which
looks up the string(xx)
 ... ;in a look-up table was left out

 icall ;Time to go pound the null terminated string out
 rjmp try_again ;Done with string command so start over

;**
;Handle S command to Set variable data
; Format of request string = 0xD5xxNN
; where xx = variable to set
; NN = HEX data for variable (xx)
; Returns 0xE5xxNN to client
;**
handleS:
 rcall getByte ;Read both nibbles of xx and assemble into a
byte. Return in buffer.
 brcc try_again ;If carry cleared, then invalid value, so start
over
 mov which,buffer
 rcall getByte ;Read both nibbles of NN and assemble into a
byte. Return in buffer.
 brcc try_again ;If carry cleared, then invalid value, so start
over
 mov what,buffer

 ;This is where we would use the value of xx, now stored in 'which', to
determine
 ;where to store the value of NN, now stored in 'what'. For the sake of
brevity,
 ;this example only handles xx=00, while all other xx are ignored.

 cpi which,0 ;If offset is zero, then VAR0 is the variable to
set
 brne try_again
 sts VAR0,what ;Set VAR0
 ldi buffer,SetResponse
 rcall putch ;Acknowledge valid command
 mov buffer,which
 swap buffer ;Rotate MSNibble into LSNibble position
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back MSNibble of variable (xx)
 mov buffer,which
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back LSNibble of variable (xx)
 mov buffer,what
 swap buffer ;Rotate MSNibble into LSNibble position
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back MSNibble of variable (NN)
 mov buffer,what
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back LSNibble of variable (NN)
 rjmp try_again ;Done with Set command so start over

;**************************************
;Handle I command to Invoke a function
; Format of request string = 0xD8xx
; where xx = function to invoke
; Returns 0xE8xx to client
;**************************************
handleI:
 rcall getByte ;Read both nibbles of xx and assemble into a
byte. Return in buffer.
 brcc try_again ;If carry cleared, then invalid value, so start
over
 mov which,buffer

 ... ;To simplify this snippet, all the code which
looks up the function(xx)
 ... ;in a look-up table was left out

 icall ;Time to go execute the function (xx)
 ldi buffer,InvokeResponse
 rcall putch ;Acknowledge valid command
 mov buffer,which
 swap buffer ;Rotate MSNibble into LSNibble position
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back MSNibble of variable (xx)
 mov buffer,which
 rcall nib2ascii ;Convert LSNibble of buffer to an ASCII character
 rcall putch ;Echo back LSNibble of variable (xx)
 rjmp try_again ;Done with Invoke command so start over

Appendix B - All Commands

The commands that can be used in a given widget's Href depend on what kind of widget it is.

Control Widget Href Functions

back() Returns to calling page.

calendar.timePeriod.setValue(x) Sets the year, month, day of the month, day of the week, hour,
military hour, am or pm, minute, second. Where timePeriod is either
year, month, day of the month, day of the week, hour, militaryHour,
am_pm, minute, second and X is an integer with the following limits:

• year: min=0000 max=65535
• month: min=1 (January) max=12 (December)
• dayOfMonth: min=1 max=31
• dayOfWeek: min=1 (Sunday) max=7 (Saturday)
• hour: min=0 max=23
• militaryHour: min=0 max=23
• am_pm: min=0 (am) max=1 (pm)
• minute: min=0 max=59
• second: min=0 max=59

calendar.timePeriod.value() All time periods return an integer, with the same limits as
timePeriod.setValue(x) EXCEPT for the hour, the hour will return
min=1, max=12 and you must read am_pm to determine the actual
time OR you can just read military hour and the min=0, max=23.

calibrate() Runs touchscreen calibration, returns to calling page when calibration
completed. Calibration constants are then saved to serial data flash.
There is a 100,000 max write limit on the life of the serial data flash.
After 10,000 writes, the Amulet OS and the user's project should be
reprogrammed to maintain data integrity.

clearLCD() Clears the entire LCD.

disableDraw() Prevents the display buffer from being updated with new data until
enableDraw() is called.

enableDraw() Resumes updates to the display buffer and forces an immediate
refresh if there is anything to draw.

document.widgetName.method(x) Performs the named method of the widget specified by widgetName.
See Control Widget IWC Methods for a full list of available methods.

fileNumber(x) Jump to the file whose internal fle index is x. See Amulet link map file
documentation for more information.

gpio(x).clear() Clears (voltage = 0) the Amulet-specific General Purpose I/O pin,
specified by x.

gpio(x).set() Sets (voltage = Vdd) the Amulet-specific General Purpose I/O pin,
specified by x.

internal.disableMSD() Disables the USB Mass Storage Device. The Amulet embedded flash
will still work, it is no longer accessible via USB MSD, though.

internal.enableMSD() Enables the USB Mass Storage Device. Counters the
internal.disableMSD() function.

internal.setCalPOC() Sets the software calibration bit in the flash memory. Causes Amulet
to go in calibration mode upon a soft or hard reset. Bit is cleared after
succesful calibration.

internal.setMSDDrive(x) If the USB Mass Storage Device is enabled, then this specifies which
flash appears as a MSD. 0 for the embedded flash, 1 for the Micro SD
card. By default, the embedded flash(0) starts out enabled and is the
active MSD Drive.

internal.softReset() Forces an immediate software controlled reset of the Amulet
processor. The equivalent of pressing the module's reset button.

internalRAM.byte(z).method(x)1 Performs the named Internal RAM byte method. See Internal RAM
documentation for list of available methods.

internalRAM.color(z).method(x)1 Performs the named Internal RAM color method. See Internal RAM
documentation for list of available methods.

internalRAM.clearRPCBuf() Clears the internalRAM RPC buffer.

internalRAM.invokeRPC(x)1 Adds the RPC number, x, to the internalRAM RPC buffer.

internalRAM.saveToFlash() Saves the current state of all the Internal RAM variables (byte, word
and string) in the serial data flash. There is a 100,000 max write limit
on the life of the serial data flash. After 10,000 writes, the Amulet
OS and the user's project should be reprogrammed to maintain data
integrity.

internalRAM.string(z).method(x) Performs the named Internal RAM string method. See Internal RAM
documentation for list of available methods.

internalRAM.word(z).method(x) Performs the named Internal RAM word method. See Internal RAM
documentation for list of available methods.

lcdBacklight.saveToFlash() Saves the current value of the lcd backlight intensity in the embedded
flash. See Backlight Control for more information.

lcdBacklight.setValue(x) Sets the value of the lcd backlight intensity to the value x. See
Backlight Control for more information.

lcdController.off() Turns the LCD controller off. The display will go black, but everything
on the page is still active as far as the touch panel is concerned.

lcdController.on() Turns the LCD controller back on if the LCD controller is off.

lcdController.rotate(x) Instantly rotates the LCD relative to the native LCD orientation. x can
be 0, 90, 180, or 270. For best results, rotations should be on the
same plane as the original project rotation setting. (i.e. If project was
created with a rotation of 0, lcdController.rotate(180) can be used,
but not 90 or 270)

loadFlash(back) Used internally to halt all current activity and await flash
programming commands from the Amulet GEM Compiler. Performs
back() upon exit.

loadFlash(reset) Used internally to halt all current activity and await flash
programming commands from the Amulet GEM Compiler. Performs
software reset upon exit.

loadFlash(return) Used to halt all current activity and await flash programming
commands. Stays in same gem page upon exit.

lowPower.sdram(mode) The sdram can be put into one of the three modes below:
• HIGH_PERFORMANCE (highest performance, full power usage)
• LOW_POWER (slightly slower performace, about 15 mA savings)
• LOWEST_POWER (slower performance, about 20 mA savings)

(savings based MK-043R module)

lowPower.sleep(mode) The low power sleep mode puts the Amulet into a mode where page
objects are no longer being updated and the OS stays in a tight loop
updating the calendar object and looking for a touch wake up or a
wake up on the negative edge on uart0 Rx line. Where mode can
be one of the three modes below (savings based on 4.3" MK-043R
module):

• LCD_OFF/SLOW_CLK (savings of about 148mA)
• LCD_OFF/FAST_CLK (savings of about 108mA)
• LCD_ON/FAST_CLK (savings of about 20mA)

NOTE: Standard product part numbers ending in -HP do not have
a SLOW_CLK mode. For other standard products, SLOW_CLK is the
32KHz clock.

nop() Non-operational function; does nothing. May be useful in creating
states for HREF state machines.

screenDump() Deprecated. Causes Amulet to jump to the screenDump page
embedded in the OS files. ScreenDump page uploads the image on
the LCD in the Amulet Bitmap Format using the xmodem protocol.

SPI(z).byteOut(x)1 Sends a raw byte x out the SPI bus while taking Amulet SPI slave
select line z low. Put x in single quotes to be treated as an ASCII
character. (i.e. '9' is equal to 0x39)

SPI(z).streamOut(x1+x2+...xn) Sends a stream of raw bytes x1, x2 ... xn out the SPI bus while taking
Amulet SPI slave select line z low. If the spixCSAAT=1 in the SPI
Configuration settings, then the slave select will stay low between
each byte, if spixCSAAT=0, then the slave select will go high between
each byte.

SPI(z).stringOut(x)1 Sends an ASCII string x, not null terminated, out the SPI bus while
taking Amulet SPI slave select line z low. If the spixCSAAT=1 in the SPI
Configuration settings, then the slave select will stay low between
each byte, if spixCSAAT=0, then the slave select will go high between
each byte. Where x is a single-quoted string or x can also be an
InternalRAM.string variable.

port.byteOut(x)1 Sends out a raw byte x out the communication port. Put x in single
quotes to be treated as an ASCII character (i.e. '9' is equal to 0x39).
The port selection can be USB, uart0, uart1, or uart2

port.invokeRPC(x)1 Sends out the invokeRPC command over the communication port,
with x being the RPC number and the port selection can be USB,
uart0, uart1, or uart2.

port.byte(z).setValue(x)1 Sends out the setByte command over the communication port, where
z is the byte variable number, x is the value to set it to and the port
selection can be USB, uart0, uart1, or uart2.

port.byte(z).setValue(x)1 Sends out the setColor command over the communication port,
where z is the color variable number, x is the color to set it to and the
port selection can be USB, uart0, uart1, or uart2.

port.setBaudRate(x) Sets the baud rate of the port to x, where x can be any baud rate from
9600 to 115200. The port selection can be uart0, uart1, or uart2.

port.streamOut(x1+x2+...xn) Sends a stream of raw bytes x1, x2 ... xn out the communication port.
No response is required or desired. The port selection can be USB,
uart0, uart1, or uart2.

port.stringOut(x)1 Sends an ASCII string x, not null terminated, out the communication
port. No response is required or desired. Where x is a single-quoted
string or x can also be an InternalRAM.string variable and the port
selection can be USB, uart0, uart1, or uart2.

port.string(z).setValue(x)1 Sends out the setString command over the communication port,
where z is the string variable number, x is the string to set it to and
the port selection can be USB, uart0, uart1, or uart2.

port.word(z).setValue(x)1 Sends out the setWord command over the communication port,
where z is the word variable number, and x is the value to set it to and
the port selection can be USB, uart0, uart1, or uart2.

filename.open() Jumps to the named page.

1. Regarding x: For Control Widgets that have intrinsic values, such as lists and sliders, use (intrinsicValue), since the
intrinsic value of the selection will be sent out. META REFRESH tags and Function/Custom Buttons should use x. The
range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and 250-character strings in double quotes
for STRINGs.

Control Widget IWC Methods

Control Widget href functions for Inter-Widget Communications (IWC).

document.widgetName.addCanvasX(x) The named StringField widget will move its canvas

by x pixels toward the right and redraw itself.

document.widgetName.addCanvasY(x) The named StringField widget will move its canvas
by x pixels toward the bottom and redraw itself.

document.widgetName.buttonDown() The named Function/Custom Button Widget will
appear as if it is currently being touched.

document.widgetName.buttonUp() The named Function/Custom Button Widget will
appear as if it is currently NOT being touched.

document.widgetName.disable() The named Timer Widget will stop running.

document.widgetName.disappear() The named widget will clear itself from the LCD; if
it is a View Widget it will also stop updating.

document.widgetName.enable() The named Timer Widget will start running based
upon the current period setting.

document.widgetName.forceHit() The named Control Widget will act as if it was
"hit".

document.widgetName.forceRefresh() For imageSequence widgets - will redraw the
image at the next update, even if the incoming
value is the same as the current state.
For image objects - when using an the
jpegOverride parameter this will redraw the new
jpeg stored in flash, which is useful if a new jpeg is
written by the host.

document.widgetName.forceUpdate() The named View Widget will act as if it's update
rate time was activated. Allows for asynchronous
updating.

document.widgetName.inverseRegionColor() The named widget will display in reverse video.

document.widgetName.inverseStringColor() The named widget's text string will display in
reverse video.

document.widgetName.nextEntry() The named List widget will move its highlighted
bar down to the next entry. Does not perform a
"hit" on the new entry.

document.widgetName.normalRegionColor() The named widget will display in normal video.

document.widgetName.normalStringColor() The named widget's text string will display in
normal video.

document.widgetName.previousEntry() The named List widget will move its highlighted
bar up to the previous entry. Does not perform a
"hit" on the new entry.

document.widgetName.reappear() The named widget will reappear on the LCD in its
last location; if it is a View Widget it will also start
updating.

document.widgetName.refresh() The named widget, if not currently in a
disappeared state, will redraw on the LCD in its
last location.

document.widgetName.reset() The named widget will initialize internal variables
and redraw.

document.widgetName.setCanvasX(x) The named StringField widget will move its canvas
to the X coordinate specified by x and redraw
itself.

document.widgetName.setCanvasY(x) The named StringField widget will move its canvas
to the Y coordinate specified by x and redraw
itself.

document.widgetName.setDelayRate_in_s(f)3 The start delay for the named widget will change
to f, where f is a floating point number that
represents the timer start delay in seconds. This
IWC cannot be used within GEMscript, please use
the setStartDelay_in_10ms(x) IWC.

document.widgetName.setDelayRate_in_10ms(x) The start delay for the named widget will change
to x times 10ms, where x is a 16-bit unsigned
integer that represents the timer start delay in
10ms increments.

document.widgetName.setHeight(x) Changes the height of the rectangle widget. Does
NOT start a redraw. Range is 2*Radius-65535.

document.widgetName.setMethod(m)2 The href method for the named widget will change
to m, where m is the method name. (such as
value() or disappear())

document.widgetName.setOnVarMethod(m)2 The IF= method for the named widget will change
to m, where m is the method name. (such as
value() or disappear())

document.widgetName.setOnVarUARTMethod(m)2 The ONVAR UART method for the named widget
will change to m, where m is the method name.
(such as Value())

document.widgetName.setOnVarVariableNumber(x)1 The variable number used in the ONVAR of the
named widget will change to x, where x is the
variable index used in the following variable types:
byte(x), word(x) or string(x).

document.widgetName.setOpacity(x) The named widget will change the global opacity
level to x, where 0 is fully transparent and 255 is
fully opaque. If the widget has other colors that
are already partially transparent then this will
have a multiplicative effect.

document.widgetName.setPeriod_in_10ms(x) The period for the named Timer object will change
to x times 10ms, where x is a 16-bit unsigned
integer that represents the timer period in 10ms
increments.

document.widgetName.setPeriod_in_s(f)3 The period for the named Timer object will change
to f, where f is a floating point number that
represents the timer period in seconds. This IWC
cannot be used within GEMscript, please use the
setPeriod_in_10ms(x) IWC.

document.imageName.setporx(x) The named image will change the X-coordinate
of its point of rotation to the value x, which is a
16-bit signed integer relative to the LEFT of the
image.

document.imageName.setporx(x) The named image will change the Y-coordinate of
its point of rotation to the value x, which is a 16-
bit signed integer relative to the TOP of the image.

document.widgetName.setRepeatDelay_in_10ms(x) The repeatDelay for the named widget will change
to x times 10ms, where x is a 16-bit unsigned
integer that represents the timer period in 10ms
increments.

document.widgetName.setRepeatDelay_in_s(f)3 The repeatDelay for the named widget will change
to f, where f is a floating point number that
represents the timer period in seconds. This IWC
cannot be used within GEMscript, please use the
setPeriod_in_10ms(x) IWC.

document.widgetName.setRepeatRate_in_10ms(x) The repeatRate for the named widget will change
to x times 10ms, where x is a 16-bit unsigned
integer that represents the timer period in 10ms
increments.

document.widgetName.setRepeatRate_in_s(f)3 The repeatRate for the named widget will change
to f, where f is a floating point number that
represents the timer period in seconds. This IWC
cannot be used within GEMscript, please use the
setPeriod_in_10ms(x) IWC.

document.imageName.setRotation(x) The named image will change its current angle of
rotation to the angle x, in degrees.

document.imageName.setScalePercent(x) The named image will change the scale factor to
the value x, specified in integer percent size of the
original image. Max value determined by widget's
maxScalePercent parameter.

document.widgetName.setStartDelay_in_s(f)3 The start delay for the named Timer object will
change to f, where f is a floating point number that
represents the timer start delay in seconds. This
IWC cannot be used within GEMscript, please use
the setStartDelay_in_10ms(x) IWC.

document.widgetName.setStartDelay_in_10ms(x) The start delay for the named Timer object will
change to x times 10ms, where x is a 16-bit
unsigned integer that represents the timer start
delay in 10ms increments.

document.widgetName.setTrigger(x)1 The named Widget will change its equal, gt or lt
value to the byte value x.

document.widgetName.setUARTMethod(m)2 The href UART method for the named widget will
change to m, where m is the UART:method name.
(such as Value())

document.widgetName.setUpdateRate_in_s(f)3 The update rate for the named widget will change
to f, where f is a floating point number that
represents the update rate in seconds. This IWC
cannot be used within GEMscript, please use the
setUpdateRate_in_10ms(x) IWC.

document.widgetName.setUpdateRate_in_10ms(x) The update rate for the named widget will change
to x times 10ms, where x is a 16-bit unsigned
integer that represents the update rate in 10ms
increments.

document.widgetName.setValue(x)1 The named widget will receive the intrinsic value
of the calling widget, where x is the intrinsic value.

document.widgetName.setValue(gettext("String")) The named widget will receive the static string
specified between the double quotes, translated

into the currently selected language. If no exact
translation is found, it will use the original string.

document.widgetName.setValue(pgettext("context","String")) The named widget will receive the static string
specified in the second argument, translated into
the currently selected language using the context
of the first argument. If no exact translation is
found with the specified context, it will use the
original string from the second argument.

document.widgetName.setVariableNumber(x)1 The variable number used in the href of the
named widget will change to x, where x is the
variable index used in the following variable types:
byte(x), word(x) or string(x).

document.widgetName.setWidth(x) Changes the width of the rectangle widget. Does
NOT start a redraw. Range is 2*Radius-65535.

document.widgetName.setX4(x) The named Widget will change its topleft x
coordinate to the word value x.

document.widgetName.setY4(x) The named Widget will change its topleft
y coordinate to the word value x.

document.widgetName.startUpdating() The named View Widget will start updating the
displayed data.

document.widgetName.stopUpdating() The named View Widget will stop updating the
displayed data.

document.widgetName.subCanvasX(x) The named StringField widget will move its canvas
by x pixels toward the left and redraw itself.

document.widgetName.subCanvasY(x) The named StringField widget will move its canvas
by x pixels toward the top and redraw itself.

document.widgetName.toggleRegionColor() The named widget will either start or stop
displaying in reverse video.

document.widgetName.toggleStringColor() The named widget's text string will either start or
stop displaying in reverse video.

document.widgetName.toggleUpdating() The named View Widget will either start or stop
updating the displayed data.

1. Regarding x: For Control Widgets that have intrinsic values, such as lists and sliders, the user can either leave the
argument field empty or use "intrinsicValue" as the argument, the intrinsic value of the selection will be sent out. META

REFRESH tags and Function/Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535
(0x00-0xffff) for a WORD and 250-character strings in double quotes for STRINGs.

2. Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice when
dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a dot and
then the method (i.e. word.value()) instead of just the method by itself.

3. Regarding f: For Control Widgets that have intrinsic values, such as lists and sliders, leave the argument field empty,
since the intrinsic value of the selection will be sent out. META REFRESH tags and Function/Custom Buttons should use
f. Like the regular updateRate, use a floating point number to specify the update rate in seconds. Range for f is 0-655.35

4. Regarding setX and setY: These methods should most always be preceded by a disappear() method and followed by
a reappear() method. The setting of the x and y coordinates are independent of the removal of the widget in the old
coordinates and the displaying in the new coordinates.

View Widget Href Functions

Some functions are only valid for very specific widgets or use cases. A function that returns an array, for example, could
not be used in a widget that only displays a single value at a time. See Widget-specific Href Functions for more

calendar.timePeriod.value(x) Returns the year, month, day of the month, day of the

week, hour, military hour, am or pm, minute, second.
Where timePeriod is either year, month, day of the
month, day of the week, hour, militaryHour, am_pm,
minute, second and X is an integer with the following
limits:

• year: min=0000 max=65535
• month: min=1 (January) max=12 (December)
• dayOfMonth: min=1 max=31
• dayOfWeek: min=1 (Sunday) max=7 (Saturday)
• hour: min=0 max=23
• militaryHour: min=0 max=23
• am_pm: min=0 (am) max=1 (pm)
• minute: min=0 max=59
• second: min=0 max=59

calendarFile.timePeriod.setValue(x) Returns the year, month, day of the month, day of the
week, hour, military hour, am or pm, minute, second at
the time the project was compiled. Where timePeriod is
either year, month, day of the month, day of the week,
hour, militaryHour, am_pm, minute, second and X is an
integer with the following limits:

• year: min=0000 max=65535
• month: min=1 (January) max=12 (December)
• dayOfMonth: min=1 max=31
• dayOfWeek: min=1 (Sunday) max=7 (Saturday)
• hour: min=0 max=23
• militaryHour: min=0 max=23
• am_pm: min=0 (am) max=1 (pm)
• minute: min=0 max=59
• second: min=0 max=59

document.widgetName.value() Returns the intrinsic value (byte or word) of the named
Control Widget.

document.widgetName.maskedValue(y) Returns the intrinsic value (byte or word) of the named
Control Widget ANDed with the mask y.

document.StringFieldName.maxTextWidth() Returns the maximum width in pixels of the displayed
text, factoring in line wraps

document.StringFieldName.maxTextHeight() Returns the the font height in pixels multiplied by the
count of rows of text drawn.

document.SliderName.handleX() Returns the left-most pixel coordinate of the handle
image.

document.SliderName.handleY() Returns the top-most pixel coordinate of the handle
image.

internal.fileNumber.value() Returns the internal flash index number of the current
page. See Amulet link map file documentation for more
information.

internal.timeouts(port).value() Returns the count of consecutive communication time-
outs for the port specified by port (uart0, uart1, uart2 or
usb).

internalRAM.byte(x).value() Returns the value of internalRAM byte variable x.

internalRAM.byte(x).maskedValue(y) Returns the value of internalRAM byte variable x ANDed
with the mask y.

internalRAM.word(x).value() Returns the value of internalRAM word variable x.

internalRAM.word(x).maskedValue(y) Returns the value of internalRAM word variable x ANDed
with the mask y.

math.randomByte.value() Returns a pseudo-random byte.

math.randomByte.maskedValue(y) Returns a pseudo-random byte ANDed with the mask y.

math.randomFilteredByte.value() Returns a pseudo-random byte that is filtered.

math.randomFilteredByte.maskedValue(y) Returns a pseudo-random byte that is filtered ANDed with
the mask y.

NOP() Returns nothing.

port.byte(x).value() Sends a getByte request over the communications
port, where x is the byte variable number and the port
selection can be USB, uart0, uart1, or uart2; returns the
value of the byte variable x.

port.byte(x).maskedValue(y) Sends a getByte request over the communications
port, where x is the byte variable number and the port
selection can be USB, uart0, uart1, or uart2; returns the
value of the byte variable x ANDed with the mask y.

port.bytes(x).array(y) Sends a getByteArray request over the communications
port, where x is the starting byte variable number, y is the
number of bytes in the arrayand the port selection can
be USB, uart0, uart1, or uart2; returns the array of byte
variables from x to (x+y). (Only valid when used in a META
Refresh tag to load InternalRAM variables or in LineGraph
Href.)

port.word(x).value() Sends a getWord request over the communications
port, where x is the word variable number and the port
selection can be USB, uart0, uart1, or uart2; returns the
value of the word variable x.

port.word(x).maskedValue(y) Sends a getWord request over the communications
port, where x is the word variable number and the port
selection can be USB, uart0, uart1, or uart2; returns the
value of the word variable x ANDed with the mask y.

port.words(x).array(y) Sends a getWordArray request over the communications
port, where x is the starting word variable number, y is
the number of words in the array and the port selection
can be USB, uart0, uart1, or uart2; returns the array of
word variables from x to (x+y). (Only valid when used in
a META Refresh tag to load InternalRAM variables or in
LineGraph Href.)

Widget-specific Href Functions

Some widgets have a very limited set of unique Href functions they are allowed to use. This section describes those special
cases.

Line Graph Widget Href Functions

internalRAM.bytes(x).array(y) Returns the array of internalRAM bytes starting at variable x

through variable (x+y).

internalRAM.words(x).array(y) Returns the array of internalRAM words starting at variable x
through variable (x+y).

port.bytes(x).array(y) Sends a getByteArray request over the communications port,
where x is the starting byte variable number, y is the number
of bytes in the array and the port selection can be USB, uart0,
uart1, or uart2. returns the array of byte variables from x to (x
+y).

port.words(x).array(y) Sends a getWordArray request over the communications port,
where x is the starting word variable number, y is the number
of words in the array and the port selection can be USB, uart0,
uart1, or uart2. returns the array of word variables from x to (x
+y).

StringField Widget Href Functions

document.widgetName.value() Returns the intrinsic value (byte, word or string) of the named Control Widget.

internal.timeouts(port).value() Receives the count of consecutive communication time-outs for the port specified
by port (uart0, uart1, uart2 or usb). (Only valid if option field populated.)

internal.OSVersionString.value() Returns the string of the current Amulet OS version number.

internalRAM.byte(x).value() Returns the value of internalRAM byte variable x.

internalRAM.byte(x).maskedValue(y)Returns the value of internalRAM byte variable x ANDed with the mask y.

internalRAM.string(x).value() Returns the string of internalRAM string variable x.

math.randomByte.value() Receives a pseudo-random byte.

math.randomByte.maskedValue(y)Receives a pseudo-random byte ANDed with the mask y.

uartn.byte(x).value() Sends a getByte request over the UART, where x is the byte variable number and
n is the uart port number; returns the value of the byte variable x. (Only valid if
option field populated.)

uartn.byte(x).maskedValue(y) Sends a getByte request over the UART, where x is the byte variable number and
n is the uart port number; returns the value of the byte variable x ANDed with the
mask y. (Only valid if option field populated.)

uartn.string(x).value() Sends a getString request over the UART, where x is the string variable number and
n is the uart port number; returns a null terminated ASCII string.

Appendix C - Inter-Widget Commands

Inter Widget Communication allows one Amulet widget to invoke the methods of another Amulet widget. (See
Appendix B for a comprehensive listing of all available function calls.) In the topics below you will find a description of
the valid IWC methods for each widget, in addition to a brief description of how those methods specifically act.

Animated Image Methods
Visual:

• disappear() - Makes the image not visible on the LCD.
• reappear() - Makes the image visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the image on the LCD. Will not redraw if currently in a disappeared state.
• reset() - Resets the animation to the first frame.
• setOpacity(x) - Changes the opacity of the image. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the animated image to the coordinate specified by the word
x.
• setY(x) - Sets the y-coordinate of the topleft corner of the animated image to the coordinate specified by the word
x.

Functional:
• fastSpeed() - Increases animation speed.
• oneFrame() - Advances animation one frame.

• pause() - Stops animation.
• play() - Starts animation in current direction.
• playBackwards() - Starts animating backwards.
• playForward() - Starts animating forward.
• regularSpeed() - Normal animation speed.
• slowSpeed() - Decreases animation speed.
• superFastSpeed() - Fastest animation speed.
• superSlowSpeed() - Slowest animation speed.

Other:
• value() - The current frame of the animation.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

BarGraph Methods
Visual:

• disappear() - Makes the BarGraph not visible on the LCD.
• reappear() - Makes the BarGraph visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the BarGraph on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the BarGraph to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the BarGraph to the coordinate specified by the word x.

Functional:
• forceUpdate() - Forces the BarGraph to call its href function immediately, regardless of the updateRate.
• maskedValue(y) - Sends the intrinsic value of the BarGraph to the calling widget. The calling object then uses that
value, ANDed with the mask y, as its input. The mask y can be either a byte or word. This method is called from a
View Widget href.
• setValue(x) - BarGraph uses x as its input. This allows a Control Widget to provide the input to a BarGraph.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• startUpdating() - BarGraph starts updating based upon its input data. Counteracts the stopUpdating() method.
• stopUpdating() - BarGraph stops updating.
• toggleUpdating() - Changes current state of BarGraph; either starts or stops updating.

• value() - Sends the intrinsic value of this widget to the calling widget. The calling object then uses that value as its
input.

Other methods:
• setMethod(m) - Changes the method originally specified by the BarGraph's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the BarGraph's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by a BarGraph. Can only be used if the
BarGraph href is byte(y).value() or word(y).value(). In either case, the y gets changed to the argument specified in
setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

CheckBox Methods
Visual:

• disappear() - Makes the CheckBox not visible or touchable on the LCD.
• reappear() - Makes the CheckBox visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the CheckBox on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the individual CheckBox to the coordinate specified by the
word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the individual CheckBox to the coordinate specified by the
word x.

Functional:
• forceHit() - CheckBox performs its "hit" method without user input. The "hit" method will invoke all href functions
of the CheckBox.. When imparting a forceHit on a single CheckBox, that CheckBox will toggle. You can also forceHit
an entire CheckBox group which will perform the href function(s), but will not toggle any checkboxes. To forceHit a
CheckBox group, use the groupName as the widgetName (rather than the individual CheckBox name).
• forceUpdate() - Forces the CheckBox group to call its initHref function immediately. Only valid if initialCondition is
FromInitHref. Updates the CheckBox group and performs a "hit". To forceUpdate a CheckBox group, use the
groupName as the widgetName (rather than the individual CheckBox name).
• maskedValue(y) - Sends the intrinsic value of the CheckBox to the calling widget.. The calling object then uses that
value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word. The mask
y can be either a byte or word. This allows a CheckBox to provide the input to a View Widget. This method is called
from a View Widget href.
• setValue(x) - The CheckBox intrinsic value is changed to x.
• value() - Sends the intrinsic value of the CheckBox or CheckBox Group to the calling widget.. The calling object then
uses that value as its input. This allows a CheckBox to provide the input to a View Widget. This method is called from
a View Widget href.

Other:

Note: The UpdateRate and DelayRate methods are only applicable to a CheckBox Group when the initHref is used
and the initialCondition is set to fromInitHref. To invoke these methods, use the groupName as the widgetName
(rather than the individual CheckBox name)
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the group. The argument is a floating point
number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the group. The argument is a floating point
number, specifying the time in seconds.

These methods are rarely used since the addition of a scripting language, but still work
• setMethod(m) - Changes the method originally specified by the CheckBox's href parameter; only valid when
the originally specified method is a single function. To change the method for a CheckBox group, or an ungrouped
CheckBox, use the groupName as the widgetName (rather than in individual CheckBox name). You cannot change
the method for an individual CheckBox within a group.
• setUARTMethod(m) - Changes the UART method originally specified by the CheckBox's href parameter; only
valid when the originally specified method is a single function. To change the method for a CheckBox group, or an
ungrouped CheckBox, use the groupName as the widgetName (rather than in individual CheckBox name). You cannot
change the method for an individual CheckBox within a group.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only be
used only if the Check Box href uses byte(y), word(y) or string(y). In all three of the cases, the value y is replaced with
the value x. Only valid when the originally specified method is a single function. Can only be used on a Check Box
Group, not an individual CheckBox.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Custom Button Methods
Visual:

• buttonDown() - Sets the Custom Button Widget to look like its down state. This method does NOT invoke the href
functions. It only affects the looks of the button, not the functionality.
• buttonUp() - Sets the Custom Button Widget to look like its up state. This method does NOT invoke the href
functions. It only affects the looks of the button, not the functionality.
• disappear() - Makes the Custom Button not visible or touchable on the LCD.
• reappear() - Makes the Custom Button visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Custom Button on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the individual Custom Button to the coordinate specified by
the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the individual Custom Button to the coordinate specified by
the word x.

Functional:

• forceHit() - Custom Button performs its "hit" method without user input. The "hit" method will invoke all href
functions of the Custom Button.
• forceUpdate() - Forces the Custom Button to call its initHref function immediately. Only valid if label is
fromInitHref. Updates the Custom Button label without performing a "hit".
• maskedValue(y) - Sends the intrinsic value of the Custom Button to the calling widget. The calling object then
uses that value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word.
The mask y can be either a byte or word. This allows a Custom Button to provide the input to a View Widget. This
method is called from a View Widget href.
• setRepeatDelay_in_10ms(x) - Changes the repeatDelay of the Custom Button, the argument being a 16-bit
unsigned integer, specifying time in 10ms increments.
• setRepeatDelay_in_s(f) - Changes the repeatDelay of the Custom Button, the argument being a floating point
number, specifying time in seconds.
• setRepeatRate_in_10ms(x) - Changes the repeatRate of the Custom Button, the argument being a 16-bit unsigned
integer, specifying time in 10ms increments.
• setRepeatRate_in_s(f) - Changes the repeatRate of the Custom Button, the argument being a floating point
number, specifying time in seconds.
• setValue(x) - The Custom Button intrinsic value is changed to x.
• value() - Sends the intrinsic value of the Custom Button to the calling widget. The calling object then uses that
value as its input. This allows a Custom Button to provide the input to a View Widget. This method is called from a
View Widget href.

Other:
Note: The UpdateRate and DelayRate methods are only applicable to a Custom Button when the initHref is used and
the label is set to fromInitHref.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the group. The argument is a floating point
number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the group. The argument is a floating point
number, specifying the time in seconds.

• setMethod(m) - Changes the method originally specified by the Custom Button's href parameter; only valid when
the originally specified method is a single function.
• setUARTMethod(m) - Changes the UART method originally specified by the Custom Button's href parameter; only
valid when the originally specified method is a single function.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only be
used only if the Custom Button href uses byte(y), word(y) or string(y). In all three of the cases, the value y is replaced
with the value x. Only valid when the originally specified method is a single function.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.

• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Custom Slider Methods
Visual:

• disappear() - Makes the Custom Slider not visible or touchable on the LCD.
• reappear() - Makes the Custom Slider visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Custom Slider on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Custom Slider to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Custom Slider to the coordinate specified by the word x.

Functional:
• forceHit() - Custom Slider performs its "hit" method without user input. The "hit" method will invoke all href
functions of that object.
• forceUpdate() - Forces the Custom Slider to call its initHref function immediately. Only valid if initialCondition is
FromInitHref. Updates the Custom Slider and performs a "hit" unless hrefOnHitOnly is selected.
• handleX() - Returns the left-most pixel coordinate of the handle image.
• handleY() - Returns the top-most pixel coordinate of the handle image.
• maskedValue(y) - Sends the intrinsic value of the Custom Slider to the calling widget. The calling object then uses
that value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word. The
mask y can be either a byte or word. This allows a Control object to provide the input to a View Widget. This method
is called from a View Widget href.
• setMax(x) - The Slider's Max parameter is changed to x. This will clip the current intrinsic value if the new Max is
below the current value, and it will repaint the new relative handle location. It will also trigger the Href function if
the HrefOnHitOnly parameter is not set.
• setMin(x) - The Slider's Min parameter is changed to x. This will shift the current intrinsic value up if the new Min
is above the current value, and it will repaint the new relative handle location. It will also trigger the Href function if
the HrefOnHitOnly parameter is not set.
• setValue(x) - The Custom Slider intrinsic value is changed to x.
• value() - Sends the intrinsic value of the Custom Slider to the calling widget. The calling object then uses that value
as its input. This allows a Control object to provide the input to a View Widget. This method is called from a View
Widget href.

Other:
Note: The UpdateRate and DelayRate methods are only applicable to a Custom Slider when the initHref is used and
the initialCondition is set to fromInitHref.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.

• setMethod(m) - Changes the method originally specified by the Custom Slider's href parameter; only valid when
the originally specified method is a single function.
• setUARTMethod(m) - Changes the UART method originally specified by the Custom Slider's href parameter; only
valid when the originally specified method is a single function.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only be
used only if the Custom Slider href uses byte(y), word(y) or string(y). In all three of the cases, the value y is replaced
with the value x. Only valid when the originally specified method is a single function.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Dynamic Image (deprecated)

This widget is no longer functional. The following documentation is for legacy products.
There are other, faster ways of loading user images at runtime with hardware. See
jpegOverride parameter of the image object.

Methods

• clearCanvas() - Clears the display where the canvas image resided. Essentially does an erase of the Dynamic Image
Widget. This only affects what is displayed on the LCD, it does not affect the actual canvas image stored in flash.
• disappear() - Makes the Dynamic Image not visible on the LCD.
• reappear() - Makes the Dynamic Image visible on the LCD. Counteracts the disappear() method.
• reset() - Makes the Dynamic Image redraw its image. Should be called after loading a new image using the
loadFlash(reset) function.
• setX(x) - Sets the x-coordinate of the topleft corner of the Dynamic Image to the coordinate specified by the word
x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Dynamic Image to the coordinate specified by the word
x.

FunctionButton Methods
Visual:

• buttonDown() - Sets the Function Button Widget to look like its down state. This method does NOT invoke the href
functions. It only affects the looks of the button, not the functionality.
• buttonUp() - Sets the Function Button Widget to look like its up state. This method does NOT invoke the href
functions. It only affects the looks of the button, not the functionality.
• disappear() - Makes the Function Button not visible or touchable on the LCD.
• reappear() - Makes the Function Button visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Function Button on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the individual Function Button to the coordinate specified by
the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the individual Function Button to the coordinate specified by
the word x.

Functional:
• forceHit() - Function Button performs its "hit" method without user input. The "hit" method will invoke all href
functions of the Function Button.
• forceUpdate() - Forces the Function Button to call its initHref function immediately. Only valid if label is
fromInitHref. Updates the Function Button label without performing a "hit".

• maskedValue(y) - Sends the intrinsic value of the Function Button to the calling widget. The calling object then
uses that value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word.
The mask y can be either a byte or word. This allows a Function Button to provide the input to a View Widget. This
method is called from a View Widget href.
• setRepeatDelay_in_10ms(x) - Changes the repeatDelay of the Function Button, the argument being a 16-bit
unsigned integer, specifying time in 10ms increments.
• setRepeatDelay_in_s(f) - Changes the repeatDelay of the Function Button, the argument being a floating point
number, specifying time in seconds.
• setRepeatRate_in_10ms(x) - Changes the repeatRate of the Function Button, the argument being a 16-bit
unsigned integer, specifying time in 10ms increments.
• setRepeatRate_in_s(f) - Changes the repeatRate of the Function Button, the argument being a floating point
number, specifying time in seconds.
• setValue(x) - The Function Button intrinsic value is changed to x.
• value() - Sends the intrinsic value of the Function Button to the calling widget. The calling object then uses that
value as its input. This allows a Function Button to provide the input to a View Widget. This method is called from a
View Widget href.

Other:
Note: The UpdateRate and DelayRate methods are only applicable to a Function Button when the initHref is used
and the label is set to fromInitHref.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the group. The argument is a floating point
number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the group. The argument is a floating point
number, specifying the time in seconds.

• setMethod(m) - Changes the method originally specified by the Function Button's href parameter; only valid when
the originally specified method is a single function.
• setUARTMethod(m) - Changes the UART method originally specified by the Function Button's href parameter; only
valid when the originally specified method is a single function.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only
be used only if the Function Button href uses byte(y), word(y) or string(y). In all three of the cases, the value y is
replaced with the value x. Only valid when the originally specified method is a single function.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Image Methods

• disappear() - Makes the image not visible on the LCD.

• reappear() - Makes the image visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the image on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the image. 0 is fully transparent and 255 is fully opaque.
• setporx(x) - Changes the x-coordinate of the Point Of Rotation, the point at which the image rotates about.
Relative to top left of image
• setpory(x) - Changes the y-coordinate of the Point Of Rotation, the point at which the image rotates about.
Relative to top left of image
• setrotation(x) - Changes the angle of rotation, in single degrees, of the image. Range: 0-359, then it wraps.
(modulo 360 applied)
• setScalePercent(x) - Changes the current scale, in percent of original size, of the image.
• setX(x) - Sets the x-coordinate of the topleft corner of the image to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the image to the coordinate specified by the word x.

These methods are only applicable when using the jpegOverride feature.

• setValue("FilePath") - If FilePath points to a valid JPEG file then override the currently displayed image with the
new JPEG. The FilePath string has a 127 character limit.
• forceRefresh() - Redraws the JPEG image specified by jpegOverride path. Useful to refresh the image after a new
JPEG has been written to flash with the same filename.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, using the intrinsicValue
argument will send out the intrinsic value of the selection. Control widgets without an intrinsic value, like Timers,
TouchAreas and Buttons should use x. When calling these IWCs from a GEMscript function, x can be negative in
methods that set an X or Y pixel coordinate

ImageBar Methods
Visual:

• disappear() - Makes the Image Bar not visible on the LCD
• reappear() - Makes the Image Bar visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Image Bar on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Image Bar to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Image Bar to the coordinate specified by the word x.

Functional:
• forceUpdate() - Forces the Image Bar to call its href function immediately, regardless of the updateRate.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• setValue(x) - Image Bar uses x as its input. This allows a Control Widget to provide the input to an Image Bar.
• startUpdating() - Image Bar starts updating based upon its input data. Counteracts the stopUpdating() method.
• stopUpdating() - Image Bar stops updating.
• toggleUpdating() - Changes current state of Image Bar; either starts or stops updating.
• value() - Returns the intrinsic value of this widget.

Other:

• setMethod(m) - Changes the method originally specified by the Image Bar's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the Image Bar's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by an Image Bar. Can be used only if the
Image Bar href is byte(y).value() or word(y).value(). In either case, the y gets changed to the argument specified in
setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

ImageScroller Methods
Visual:

• disappear() - Makes the Image Scroller not visible or touchable on the LCD.
• reappear() - Makes the Image Scroller visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Image Scroller on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Image Scroller to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Image Scroller to the coordinate specified by the word x.

Functional:
• forceHit() - Image Scroller performs its "hit" method without user input. The "hit" method will invoke the href
function of that object.
• forceUpdate() - Forces the Image Scroller to call its initHref function immediately. Only valid if initialCondition is
FromInitHref. Updates the Image Scroller and performs a "hit".
• maskedValue(y) - Sends the intrinsic value of the Image Scroller to the calling widget. The calling object then uses
that value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word. The
mask y can be either a byte or word. This allows a Control object to provide the input to a View Widget. This method
is called from a View Widget href.
• value() - Sends the intrinsic value of the Image Scroller to the calling widget. The calling object then uses that value
as its input. This allows a Control object to provide the input to a View Widget. This method is called from a View
Widget href.

Other:
Note: The UpdateRate and DelayRate methods are only applicable to a ImageScroller when the initHref is used and the
initialCondition is set to fromInitHref.

• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.

• setMethod(m) - Changes the method originally specified by the Image Scroller's href parameter; only valid when
the originally specified method is a single function.
• setUARTMethod(m) - Changes the UART method originally specified by the Image Scroller's href parameter; only
valid when the originally specified method is a single function.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only be
used if the Image Scroller href uses byte(y), word(y) or string(y). In all three of the cases, the value y is replaced with
the value x. Only valid when the originally specified method is a single function.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

ImageSequence Methods
Visual:

• disappear() - Makes the Image Sequence not visible on the LCD
• forceRefresh() - Forces the Image Sequence to paint the image at the next update, even if the incoming value is the
same as the current state.
• reappear() - Makes the Image Sequence visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Image Sequence on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Image Sequence to the coordinate specified by the word
x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Image Sequence to the coordinate specified by the word
x.

Functional:
• forceUpdate() - Forces the Image Sequence to call its href function immediately, regardless of the updateRate.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• setValue(x) - Image Sequence uses x as its input. This allows a Control Widget to provide the input to an Image
Sequence.
• startUpdating() - Image Sequence starts using its input data to determine which image to display. Counteracts the
stopUpdating() method.
• stopUpdating() - Image Sequence stops using its input data to determine which image to display.
• toggleUpdating() - Changes current state of Image Sequence; either starts or stops using its input data to
determine which image to display.

• value() - Returns the intrinsic value of this widget.

Other:
• setMethod(m) - Changes the method originally specified by the Image Sequence's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the Image Sequence's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by an Image Sequence. Can be used only
if the Image Sequence href is byte(y).value() or word(y).value(). In either case, the y gets changed to the argument
specified in setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Line Graph Methods
Visual:

• disappear() - Makes the Line Graph not visible on the LCD.
• reappear() - Makes the Line Graph visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Line Graph on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Line Graph to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Line Graph to the coordinate specified by the word x.

Functional:
• forceUpdate() - Forces the Line Graph to call its href function immediately, regardless of the updateRate.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• startUpdating() - Line Graph starts plotting based upon its input data. Counteracts the stopUpdating() method.
• stopUpdating() - Line Graph stops plotting.
• toggleUpdating() - Changes current state of Line Graph; either starts or stops plotting.

Other:
• setMethod(m) - Changes the method originally specified by the Line Graph's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the Line Graph's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by an Line Graph. Can be used only if the
Line Graph href is byte(y).value() or word(y).value(). In either case, the y gets changed to the argument specified in
setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Line Plot Methods
Visual:

• disappear() - Makes the Line Plot not visible on the LCD.
• reappear() - Makes the Line Plot visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Line Plot on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Line Plot to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Line Plot to the coordinate specified by the word x.

Functional:
• forceUpdate() - Forces the Line Plot to call its href function immediately, regardless of the updateRate.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• setValue(x) - Line Plot uses x as its input. This allows a Control Widget to provide the input to a Line Plot.
• startUpdating() - Line Plot starts plotting based upon its input data. Counteracts the stopUpdating() method.
• stopUpdating() - Line Plot stops plotting.
• toggleUpdating() - Changes current state of Line Plot; either starts or stops plotting.

Other:
• setMethod(m) - Changes the method originally specified by the Line Plot's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the Line Plot's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by an Line Plot. Can be used only if the
Line Plot href is byte(y).value() or word(y).value(). In either case, the y gets changed to the argument specified in
setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/

Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Linear Gauge Methods
Visual:

• disappear() - Makes the Linear Gauge not visible on the LCD.
• reappear() - Makes the Linear Gauge visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Linear Gauge on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Linear Gauge to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Linear Gauge to the coordinate specified by the word x.

Functional:
• forceUpdate() - Forces the Linear Gauge to call its href function immediately, regardless of the updateRate.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• setValue(x) - Linear Gauge uses x as its input. This allows a Control Widget to provide the input to a Linear Gauge.
• startUpdating() - Linear Gauge starts updating based upon its input data. Counteracts the stopUpdating() method.
• stopUpdating() - Linear Gauge stops updating.
• toggleUpdating() - Changes current state of Linear Gauge; either starts or stops updating.
• value() - Returns the intrinsic value of this widget.

Other:
• setMethod(m) - Changes the method originally specified by the Linear Gauge's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the Linear Gauge's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by a Linear Gauge. Can be used only
if the Linear Gauge href is byte(y).value() or word(y).value(). In either case, the y gets changed to the argument
specified in setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.

• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

List Methods
Visual:

• disappear() - Makes the List not visible or touchable on the LCD.
• nextEntry() - Highlighted box of a list box widget moves to next entry in the list. Effectively moves the highlighted
box down one entry. Does NOT automatically perform a "hit" method.
• previousEntry() - Highlighted box of a list box widget moves to previous entry in the list. Effectively moves the
highlighted box up one entry. Does NOT automatically perform a "hit" method.
• reappear() - Makes the List visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the List on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the List to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the List to the coordinate specified by the word x.

Functional:
• forceHit() - List performs its "hit" method without user input. The "hit" method will invoke all href functions of that
object.
• forceUpdate() - Forces the List to call its initHref function immediately. Only valid if initialCondition is FromInitHref.
Updates the List and performs a "hit".
• maskedValue(y) - Sends the intrinsic value of the List to the calling widget. The calling object then uses that value,
ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word. The mask y can
be either a byte or word. This allows a Control object to provide the input to a View Widget. This method is called
from a View Widget href.
• value() - Sends the intrinsic value of the List to the calling widget. The calling object then uses that value as its
input. This allows a Control object to provide the input to a View Widget. This method is called from a View Widget
href.

Other:
Note: The UpdateRate and DelayRate methods are only applicable to a List when the initHref is used and the
initialCondition is set to fromInitHref.

• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.

• setMethod(m) - Changes the method originally specified by the List's href parameter; only valid when the
originally specified method is a single function.
• setUARTMethod(m) - Changes the UART method originally specified by the List's href parameter; only valid when
the originally specified method is a single function.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only be
used if the List href uses byte(y), word(y) or string(y). In all three of the cases, the value y is replaced with the value
x. Only valid when the originally specified method is a single function.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

META Refresh Tag (deprecated)
Methods

• disappear() - Stops the META Refresh Tag URL from being launched.
• forceHit() - META Refresh Tag will perform its "hit" method without user input. The "hit" method will invoke all href
functions of the META Refresh Tag.
• forceUpdate() - Forces the META Refresh Tag to call its trigger variable function immediately.
• maskedValue(y) - Sends the intrinsic value associated with the META Refresh Tag to the calling widget. The calling
object then uses that value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a
byte or word. The mask y can be either a byte or word. This allows a Control object to provide the input to a View
Widget. This method is called from a View Widget href.
• reappear() - Allows the META Refresh Tag URL to be launched. Counteracts the disappear() method.
• reset() - Resets timers in the META Refresh Tag.
• setDelayRate_in_10ms(x) - Changes the initial delay of the META Refresh Tag, the argument being a 16-bit
unsigned integer, specifying time in 10ms increments.
• setDelayRate_in_s(f) - Changes the initial delay of the META Refresh Tag, the argument being a floating point
number, specifying time in seconds.
• setValue(x) - The META Refresh Tag intrinsic value is changed to x.
• setMethod(m) - Changes the method originally specified by the META Refresh Tag's URL parameter; it is only valid
when the originally specified method is a single function. If the URL method uses the UART, then you must use the
setUARTMethod() method.
• setOnVarMethod(m) - Changes the method originally specified by the META Refresh Tag's trigger
variable parameter; it is only valid when the originally specified method is a single function. If the ONVAR method
uses the UART, then you must use the setOnVarUARTMethod() method.
• setOnVarUARTMethod(m) - Changes the UART method originally specified by the META Refresh Tag's trigger
variable parameter; it is only valid when the originally specified method is a single function. If the ONVAR method
does not use the UART, then you must use the setOnVARMethod() method.
• setOnVarVariableNumber(x) - Changes the variable number originally specified by the META Refresh's
onVar parameter. Can be used only if the META Refresh onVar has a byte(y), word(y) or string(y). In all cases, the y
gets changed to the argument specified in setOnVarVariableNumber(x).
• setTrigger(x) - Changes the trigger value originally specified by the META Refresh's trigger, trigger.gt or trigger.lt
parameter to the byte value x.
• setUARTMethod(m) - Changes the UART method originally specified by the META Refresh Tag's URL parameter; it
is only valid when the originally specified method is a single function. If the URL method does not use the UART, then
you must use the setMethod() method.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the META Refresh Tag, the argument
being a 16-bit unsigned integer, specifying time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the META Refresh Tag, the argument being
a floating point number, specifying time in seconds.
• setVariableNumber(x) - Changes the variable number originally specified by the META Refresh's URL parameter.
Can be used only if the META Refresh URL has a byte(y), word(y) or string(y). In all cases, the y gets changed to the
argument specified in setVariableNumber(x); it is only valid when the originally specified method is a single function.

value() - Sends the intrinsic value associated with the META Refresh Tag to the calling widget. The calling object then
uses that value as its input. This allows a Control object to provide the input to a View Widget. This method is called
from a View Widget href.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Numeric Field Methods
Visual:

• disappear() - Makes the Numeric Field not visible on the LCD.
• inverseRegionColor() - Makes the entire Numeric Field (both the background and the text) display in reverse video.
Counteracts the normalRegionColor() method.
• inverseStringColor() - Makes the Numeric Field's text string display in reverse video. Counteracts the
normalStringColor() method.
• normalRegionColor() - Makes the entire Numeric Field (both the background and the text) display in normal video.
Counteracts the inverseRegionColor() method.
• normalStringColor() - Makes the Numeric Field's text string display in normal video. Counteracts the
normalStringColor() method.
• reappear() - Makes the Numeric Field visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Numeric Field on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Numeric Field to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Numeric Field to the coordinate specified by the word x.
• toggleRegionColor() - Toggles the polarity of the entire Numeric Field (both the background and the text).
• toggleStringColor() - Toggles the Numeric Field's text string polarity. Does not affect the background color.

Functional:
• forceUpdate() - Forces the Numeric Field to call its href function immediately, regardless of the updateRate.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• setValue(x) - Numeric Field uses x as its input. This allows a Control Widget to provide the input to a Numeric Field.
• startUpdating() - Numeric Field starts updating based upon its input data. Counteracts the stopUpdating() method.
• stopUpdating() - Numeric Field stops updating.
• toggleUpdating() - Changes current state of Numeric Field; either starts or stops updating.
• value() - Sends the intrinsic value of this widget to the calling widget. The calling object then uses that value as its
input. This method is called from a View Widget href.

Other:
• setMethod(m) - Changes the method originally specified by the Numeric Field's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the Numeric Field's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by an Numeric Field. Can be used only
if the Numeric Field href is byte(y).value() or word(y).value(). In either case, the y gets changed to the argument
specified in setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Pulse Width Modulation (deprecated)

The following documentation is for legacy products. There are other ways of controlling
the PWM that do not use a widget. For backlight control, click here. For controlling PWM
for other uses, see the scripting help. First go to GEMstudio Pro's Help menu and select
GEMscript API. Then navigate to GEMscript API -> Hardware Access -> PWM.

Methods

• setPeriod(x)1 - Sets the period of the PWM object, in ms. Range is 10-2040. (High Performance range is 3-129000)

• setPulseWidth(x)1 - Sets the pulse width of the PWM object, in ms. Range is 0-2040. (High Performance range is
0-129000)
• start() - Starts the PWM object, using the current period and pulse width settings.
• stop() - Stops the PWM object.

1. Regarding x: For static numbers, x is defined in milliseconds, but if the value is passed from a widget's intrinsic value,
for example passed from a Slider widget, or from InternalRAM variables, this becomes microseconds.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.

Radio Button Methods
Visual:

• disappear() - Makes the Radio Button not visible or touchable on the LCD.

• reappear() - Makes the Radio Button visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Radio Button on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the individual Radio Button to the coordinate specified by
the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the individual Radio Button to the coordinate specified by
the word x.

Functional:
• forceHit() - Radio Button performs its "hit" method without user input. The "hit" method will invoke all href
functions of that object. Unlike the CheckBox, a forceHit can only be imparted to an individual Radio Button, not a
Radio Button group.
• forceUpdate() - Forces the Radio Button group to call its initHref function immediately. Only valid if
initialCondition is FromInitHref. Updates the Radio Button group and performs a "hit". To forceUpdate a Radio
Button group, use the groupName as the widgetName (rather than the individual Radio Button name).
• maskedValue(y) - Sends the intrinsic value of the Radio Button to the calling widget. The calling object then uses
that value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word. The
mask y can be either a byte or word. This allows a Control object to provide the input to a View Widget. This method
is called from a View Widget href.
• setValue(x) - The Radio Button intrinsic value is changed to x.
• value() - Sends the intrinsic value of the Radio Button to the calling widget. The calling object then uses that value
as its input. This allows a Control object to provide the input to a View Widget. This method is called from a View
Widget href.

Other:
Note: The UpdateRate and DelayRate methods are only applicable to a Radio Button Group when the initHref is used
and the initialCondition is set to fromInitHref. To invoke these methods, use the groupName as the widgetName
(rather than the individual Radio Button name)
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the group. The argument is a floating point
number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the group. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the group. The argument is a floating point
number, specifying the time in seconds.

• setMethod(m) - Changes the method originally specified by the Radio Button's href parameter; only valid when
the originally specified method is a single function.
• setUARTMethod(m) - Changes the UART method originally specified by the Radio Button's href parameter; only
valid when the originally specified method is a single function.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only be
used only if the Radio Button href uses byte(y), word(y) or string(y). In all three of the cases, the value y is replaced
with the value x. Only valid when the originally specified method is a single function. Can only be used on an
individual Radio Button, not the entire Radio Button Group.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice

when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Rectangle Methods

• disappear() - Makes the widget not visible on the LCD.
• reappear() - Makes the widget visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the widget on the LCD. Will not redraw if currently in a disappeared state.
• setLineWeight(x) - Changes the thickness of the border. Does NOT start a redraw. Range is 0-255.
• setOpacity(x) - Changes the opacity of the widget and starts a redraw. 0 is fully transparent and 255 is fully
opaque.
• setWidth(x) - Changes the width of the rectangle widget. Does NOT start a redraw. Range is 2*Radius-65535.
• setHeight(x) - Changes the height of the rectangle widget. Does NOT start a redraw. Range is 2*Radius-65535.
• setX(x) - Sets the x-coordinate of the topleft corner of the widget to the coordinate specified by the signed word x.
Range is -32768 to 32767
• setY(x) - Sets the y-coordinate of the topleft corner of the widget to the coordinate specified by the signed word x.
Range is -32768 to 32767

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Timers, Touch Areas, and Function/Custom
Buttons should use a static number or an internalRAM. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535
(0x00-0xffff) for a WORD

Scribble (deprecated)
This widget is no longer fully functional. Please contact support@amulettechnolgies.com
for signature capture applications or any questions.

Methods

• clearCanvas() - Clears the scribble canvas completely, including any background images in the canvas.
• disappear() - Makes the Scribble Widget not visible or touchable on the LCD.

• reappear()1 - Makes the Scribble Widget touchable on the LCD. Partialy counteracts the disappear() method.
Should be immediatly followed by a paintBackground() or paintCanvas().
• paintBackground() - Redraws the background image from flash.
• paintCanvas() - Redraws the canvas image from flash
• reset() - Clears the canvas image currently on the Scribble Widget and redraws the canvas image stored in flash.
• saveCanvas() - The canvas displayed on the LCD is saved to flash, overwriting the previous canvas image.
• setLinePattern(x) - Changes the line pattern of the active freehand drawing line to x.
• setLineWeight(x) - Changes the line weight of the active freehand drawing line, in pixels, to x. Range is 1-15
• setX(x) - Sets the x-coordinate of the topleft corner of the Scribble Widget to the coordinate specified by the word
x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Scribble Widget to the coordinate specified by the word
x.
• uploadImage() - The canvas displayed on the LCD is uploaded to an external processor using xmodem crc protocol.
The image will be sent in the Amulet Bitmap Format.

1. Regarding reappear(): If reappear() is selected, either paintCanvas() or paintBackground() should be called
immediately afterwards, because the reappear() method for the scribble widget only allows redrawing, it does NOT
redraw either the canvas or the background image. If it is desired to display exactly what was on the screen at the
time of the disappear, they should first saveCanvas(), then call disappear(). Then when calling reappear(), also call
paintCanvas().

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Slider Methods
Visual:

• disappear() - Makes the Slider not visible or touchable on the LCD.
• reappear() - Makes the Slider visible and touchable on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the Slider on the LCD. Will not redraw if currently in a disappeared state.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setX(x) - Sets the x-coordinate of the topleft corner of the Slider to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the Slider to the coordinate specified by the word x.

Functional:
• forceHit() - Slider performs its "hit" method without user input. The "hit" method will invoke all href functions of
that object.
• forceUpdate() - Forces the Slider to call its initHref function immediately. Only valid if initialCondition is
FromInitHref. Updates the Slider and performs a "hit" unless hrefOnHitOnly is selected.
• handleX() - Returns the left-most pixel coordinate of the handle image.
• handleY() - Returns the top-most pixel coordinate of the handle image.
• maskedValue(y) - Sends the intrinsic value of the Slider to the calling widget. The calling object then uses that
value, ANDed with the mask y, as its input. This method is only valid if the intrinsic value is a byte or word. The mask
y can be either a byte or word. This allows a Control object to provide the input to a View Widget. This method is
called from a View Widget href.
• setMax(x) - The Slider's Max parameter is changed to x. This will clip the current intrinsic value if the new Max is
below the current value, and it will repaint the new relative handle location. It will also trigger the Href function if
the HrefOnHitOnly parameter is not set.
• setValue(x) - The Slider intrinsic value is changed to x.
• setMin(x) - The Slider's Min parameter is changed to x. This will shift the current intrinsic value up if the new Min
is above the current value, and it will repaint the new relative handle location. It will also trigger the Href function if
the HrefOnHitOnly parameter is not set.
• value() - Sends the intrinsic value of the Slider to the calling widget. The calling object then uses that value as its
input. This allows a Control object to provide the input to a View Widget. This method is called from a View Widget
href.

Other:

Note: The UpdateRate and DelayRate methods are only applicable to a Slider when the initHref is used and the
initialCondition is set to fromInitHref.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.

• setMethod(m) - Changes the method originally specified by the Slider's href parameter; only valid when the
originally specified method is a single function.
• setUARTMethod(m) - Changes the UART method originally specified by the Slider's href parameter; only valid
when the originally specified method is a single function.
• setVariableNumber(x) - Changes the variable number originally specified in the href function to x. Can only be
used only if the Slider href uses byte(y), word(y) or string(y). In all three of the cases, the value y is replaced with the
value x. Only valid when the originally specified method is a single function.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Static Text Methods
Visual:

• addCanvasX(x) - Moves the StringField's canvas x pixels to the right.
• addCanvasY(x) - Moves the StringField's canvas x pixels down.
• disappear() - Makes the String Field not visible on the LCD.
• inverseRegionColor() - Makes the entire String Field (both the background and the text) display in reverse video.
Counteracts the normalRegionColor() method.
• inverseStringColor() - Makes the String Field's text string display in reverse video. Counteracts the
normalStringColor() method.
• normalRegionColor() - Makes the entire String Field (both the background and the text) display in normal video.
Counteracts the inverseRegionColor() method.
• normalStringColor() - Makes the String Field's text string display in normal video. Counteracts the
normalStringColor() method.
• reappear() - Makes the String Field visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the String Field on the LCD. Will not redraw if currently in a disappeared state.
• setCanvasX(x) - Moves the StringField's canvas to the X-coordinate x.
• setCanvasY(x) - Moves the StringField's canvas to the Y-coordinate x.
• setHeight(x) - Changes the height of the widget. Does NOT start a redraw.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setWidth(x) - Changes the width of the widget. Does NOT start a redraw.
• setX(x) - Sets the x-coordinate of the topleft corner of the String Field to the coordinate specified by the word x.

• setY(x) - Sets the y-coordinate of the topleft corner of the String Field to the coordinate specified by the word x.
• subCanvasX(x) - Moves the StringField's canvas x pixels to the left.
• subCanvasY(x) - Moves the StringField's canvas x pixels up.
• toggleRegionColor() - Toggles the polarity of the entire String Field (both the background and the text).
• toggleStringColor() - Toggles the String Field's text string polarity. Does not affect the background color.

Functional:
• maxTextHeight() - Returns the width of the displayed text, in pixels.
• maxTextWidth() - Returns the height of the displayed text, in pixels.
• value() - Sends the static text string to the calling widget. The calling object then uses that value as its input. This
method is called from a View Widget href.

String Field Methods
Visual:

• addCanvasX(x) - Moves the StringField's canvas x pixels to the right.
• addCanvasY(x) - Moves the StringField's canvas x pixels down.
• disappear() - Makes the String Field not visible on the LCD.
• inverseRegionColor() - Makes the entire String Field (both the background and the text) display in reverse video.
Counteracts the normalRegionColor() method.
• inverseStringColor() - Makes the String Field's text string display in reverse video. Counteracts the
normalStringColor() method.
• normalRegionColor() - Makes the entire String Field (both the background and the text) display in normal video.
Counteracts the inverseRegionColor() method.
• normalStringColor() - Makes the String Field's text string display in normal video. Counteracts the
normalStringColor() method.
• reappear() - Makes the String Field visible on the LCD. Counteracts the disappear() method.
• refresh() - Redraws the String Field on the LCD. Will not redraw if currently in a disappeared state.
• setCanvasX(x) - Moves the StringField's canvas to the X-coordinate x.
• setCanvasY(x) - Moves the StringField's canvas to the Y-coordinate x.
• setHeight(x) - Changes the height of the widget. Does NOT start a redraw.
• setOpacity(x) - Changes the opacity of the widget. 0 is fully transparent and 255 is fully opaque.
• setWidth(x) - Changes the width of the widget. Does NOT start a redraw.
• setX(x) - Sets the x-coordinate of the topleft corner of the String Field to the coordinate specified by the word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the String Field to the coordinate specified by the word x.
• subCanvasX(x) - Moves the StringField's canvas x pixels to the left.
• subCanvasY(x) - Moves the StringField's canvas x pixels up.
• toggleRegionColor() - Toggles the polarity of the entire String Field (both the background and the text).
• toggleStringColor() - Toggles the String Field's text string polarity. Does not affect the background color.

Functional:
• forceUpdate() - Forces the String Field to call its href function immediately, regardless of the updateRate
• maxTextHeight() - Returns the width of the displayed text, in pixels.
• maxTextWidth() - Returns the height of the displayed text, in pixels.
• setDelayRate_in_10ms(x) - Changes the time until the next polled update of the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setDelayRate_in_s(f) - Changes the time until the next polled update of the widget. The argument is a floating
point number, specifying the time in seconds.
• setUpdateRate_in_10ms(x) - Changes the update rate originally specified by the widget. The argument is a 16-bit
unsigned integer, specifying the time in 10ms increments.
• setUpdateRate_in_s(f) - Changes the update rate originally specified by the widget. The argument is a floating
point number, specifying the time in seconds.
• setValue(x) - String Field uses x as an input. This allows a Control Widget to provide the input to a String Field.
• startUpdating() - String Field starts updating based upon its input data. Counteracts the stopUpdating() method.

• stopUpdating() - String Field stops updating.
• toggleUpdating() - Changes current state of String Field; either starts or stops updating.
• value() - Sends the intrinsic value of the String Field to the calling widget. This is the dynamic portion of the string,
not including any extra text in the printf parameter. The calling object then uses that value as its input. This method
is called from a View Widget href.

Other:
• setMethod(m) - Changes the method originally specified by the String Field's href parameter.
• setUARTMethod(m) - Changes the UART method originally specified by the String Field's href parameter.
• setVariableNumber(x) - Changes the variable number originally specified by a String Field. Can be used only if the
String Field href is byte(y).value() or string(y).value(). In both cases, the y gets changed to the argument specified in
setVariableNumber(x).

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding m - When setMethod(),setOnVarMethod(),setOnVarUARTMethod() or setUARTMethod(), is the IWC
method, the argument should be the name of the method you want to set. i.e. disappear() or byte.value(). Notice
when dealing with a method that relies on a type (byte, word or string) you need to include the type separated by a
dot and then the method (i.e. word.value()) instead of just the method by itself.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular updateRate, use the floating point number to specify the update rate
in seconds. The range for f is 0-655.35.

Timer Methods

• disable() - Makes the Timer object stop functioning.
• enable() - Makes the Timer object start functioning. Counteracts the disable() method.
• forceHit() - Timer object performs its "hit" method immediately. The "hit" method will invoke all href functions of
that object.
• reset() -Sets the period counter to the value originally specified in startDelay.
• setPeriod_in_10ms(x) - Changes the period of the Timer object, the argument being a 16-bit unsigned integer,
specifying time in 10ms increments.
• setPeriod_in_s(f) - Changes the period of the Timer object, the argument being a floating point number, specifying
time in seconds.
• setStartDelay_in_10ms(x) - Changes the initial delay of the Timer object, the argument being a 16-bit unsigned
integer, specifying time in 10ms increments.
• setStartDelay_in_s(f) - Changes the initial delay of the Timer object, the argument being a floating point number,
specifying time in seconds.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/

Custom Buttons should use f. Like the regular period, use the floating point number to specify the update rate in
seconds. The range for f is 0-655.35.

Touch Area Methods

• disable() - Makes the Touch Area object stop functioning.
• enable() - Makes the Touch Area object start functioning. Counteracts the disable() method.
• forceHit() - Touch Area object performs its "onRelease" method immediately.
• setRepeatDelay_in_10ms(x) - Changes the Touch Area, the argument being a 16-bit unsigned integer, specifying
time in 10ms increments.
• setRepeatDelay_in_s(f) - Changes the period of the Touch Area, the argument being a floating point number,
specifying time in seconds.
• setRepeatRate_in_10ms(x) - Changes the initial delay of the Touch Area, the argument being a 16-bit unsigned
integer, specifying time in 10ms increments.
• setRepeatRate_in_s(f) - Changes the initial delay of the Touch Area, the argument being a floating point number,
specifying time in seconds.
• setX(x) - Sets the x-coordinate of the topleft corner of the widget to the coordinate specified by the signed word x.
• setY(x) - Sets the y-coordinate of the topleft corner of the widget to the coordinate specified by the signed word x.

Regarding Method Parameters

• Regarding x - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use x. The range for x is 0-255 (0x00-0xff) for a BYTE, 0-65535 (0x00-0xffff) for a WORD and
strings in double quotes for STRINGs.
• Regarding f - For Control Widgets that have intrinsic values, such as lists and sliders, use the intrinsicValue
argument, since the intrinsic value of the selection will be sent out. Anchors, Timers, Touch Areas, and Function/
Custom Buttons should use f. Like the regular repeatRate, use the floating point number to specify the update rate in
seconds. The range for f is 0-655.35.

Restore Amulet OS

The Amulet OS needs to be restored when the following occurs:
1. When there is an OS mismatch between the display and the compiler or GEMstudio.
2. When the flash is corrupted.
3. When OS related settings are modified such as touch panel, init file or LCD settings.

To restore Amulet OS:

1. Flip respective dip switch (shown in the list below) to off position.

Part Number Switch# Dip#

EVK-TA-TM035KBH02 18 1

EVK-VX-COG-T350MCQV-03 18 2

EVK-TA-TM043NBH02 6 1

EVK-TA-TM047NBH01 6 1

EVK-HX-HDA570ST-VH 6 1

EVK-HX-HDA570ST-V 6 1

EVK-KA-TCG057VGLBL-C50 18 2

EVK-SY-SCA05711-BFN-LRA 1 2

EVK-KA-TCG062HVLBC-G20 18 2

EVK-SY-SCA07010-BFN-LRA 12 2

EVK-TA-TM070RBH10 12 1

GEMboard 6 1

GEMboard II 6 1

STK-480272C 6 1

MK-480272C 6 1

2. Power up the unit.
3. Plug in the USB cable.
4. In GEMstudio, open the project to be programmed.
5. Select the Program button
6. In the Program Flash pop-up window, check the Include OS Files check box
7. Select the Program Project button

The project and Amulet OS Files should then be programmed into the module.

GEMstudio Production Files

Once you are finished with your project, you can save the project files along with the latest OS files tuned specifically
for your display in one production ready file. There are two production file types. The first is a .gem file, which is
compressed and encrypted, but not easily parsable. A .gem file can be used if GEMstudio or GEMprogrammer will
be used to program the .gem file into the Amulet module. The second is a .pdb file, which is neither compressed nor
encrypted, but is easily parsable. A .pdb file is useful if you are going to program the Amulet module via your processor.

Production File Builds

There are three options in GEMstudio's File menu when choosing to save a production file:

Save as Production File With OS - Everything needed to run the GUI from scratch
Save as Update File With OS - Same as above except it leaves out the touchpanel calibration file to preserve the
custom calibration already on the hardware. This is particularly useful with resistive touchscreens, whose default
behavior is to force a recalibration whenever installing OS.
Save as Update File - This only contains the custom GUI, no supporting OS configurations. Use this only when you know
the Amulet OS version you are updating on is the same.

Opening a Production File

You can open either a .gem or a .pdb file in GEMstudio by selecting File > Open Production File. Once the .gem or .pdb
file has been loaded into GEMstudio, you can either Run the project in GEMplayer or you can Program the project into
an Amulet module.

InField Programming

This feature enables the user to program a pre-compiled Amulet project file generated by GEMstudio through an
external processor. See the next three topics to learn more.

Pass Thru Programming

Here are the basics you need to know to program the Amulet Color chip from an external processor over a serial port.

1. You need to save your compiled project as a .pdb file.

2. You need to extract the individual files from the pdb format so you have individual binary files which can be sent to the
Amulet. Palm Database Format explains how to parse this file.

3. Those binary files are sent to the Amulet using a slightly modified 128-byte or 1K Xmodem (with 16-bit CRC) protocol.
For 1k-Xmodem, the SOH byte is 0x02, and for 128-byte it is 0x01. See XMODEM Protocol regarding the protocol used and
review the notes below.

Here are the details you need to know:

1. Bytes 0-5 of each binary file are the file header bytes. The Amulet uses these bytes to determine where to store the file.
You can send the files in any order, the Amulet won't mind.

2. In standard Xmodem protocol the slave sends out a 'C' character once per second. In Amulet's color chip, we will
instead output a character that indicates the size of the serial dataflash connected to first chip select CS0 of the SPI bus.
This character is reffered to as the Flash Size Notifier, or FSN. The flash size to character mapping is as follows:

a : 1Mbit
b : 2Mbit
c : 4Mbit
d : 8Mbit
e : 16Mbit
f : 32Mbit (standard starter kit size)
g : 64Mbit (GCC-2 size)
C: eMMC and QSPI (High Performance Modules)
Z: None Detected

3. There is no time limit between files. The chip will wait about 2 seconds, and if it gets no response, then it just sends out
the same thing again. There is a 500ms time limit between packets of the same file and between bytes of the same packet.
If either of these 500ms time limits are met, then that specific file transfer is aborted, and the FSN will be sent out, and that
file will need to be resent. Receiving just one byte of the next packet will reset that timer, so systems with excessive latency
can build in an additional buffer because the first three bytes are predictable.

4. You can set the Amulet up to program either by flipping the Program Mode (pin 26) to HIGH and asserting the reset,
or the much cleaner way of sending a "wake up" message (0xA0, 0x02, 0x00, 0x16, 0x48), which has to be at the same
baud rate as the page you are currently on when trying to wake it up (4800, 9600, 19200, 38400, 57600, 115200, etc). By
default, it will also program at this rate. Please contact Amulet if you would like to change the default programming rate to
something other than the current baud rate. This requires a quick modification of the OS files.

5. When entering the programming mode from software "wake up" message, there will be an OS version String output
after 3 seconds. The compiler uses this message to make sure the firmware and compiler version match, but you can ignore
this if you do not want to use it. You can skip the 3 second wait by sending a 0x43 (ASCII 'C') after sending the "wake up"
message. Additionally, the OS version string may contain characters which match the expected FSN, but are not valid FSN
characters. The OS string is encapsulated with { and } brackets, or in hex: 0x7B and 0x7D respectively. This means if entering
program mode with the software command, you should wait until after the closing } bracket before looking for the FSN to
begin programming.

6. Xmodem has a CRC, but there is an optional secondary CRC that checks the data that was actually written to the
flash. After sending the EOT byte (0x04) after the last packet in each file, you can send what we have dubbed the EOTCRC
(0x16) This will cause the Amulet color chip to calculate a new CRC based off of the data in the flash. A match is indicated
by an ACK and a non-match by a NACK. The FSN will begin transmission after the ACK or NACK. A NACK'd file should be
reprogrammed. Every 500ms during the flash read and CRC calculation a 0x14 will be sent to let the host know we're still
alive, but working on the CRC verification. This would only happen on larger files.

7. When there are no more files to send the Amulet, send an ETB (0x17) and the Amulet will reboot and start running at
the new homepage that you just programmed.

For LabVIEW users, this process is implemented in the "Deploy PDB" VI that is part of the Amulet LabVIEW driver.

Palm Database Format

Explaining the entire Palm database format in detail is beyond the scope of this document, so only the key components
will be discussed. A PDB file is made up of the following key components:

1. A header which describes the database.
2. A list of record entries, each describing a chunk of raw data.
3. And the raw data itself which is stored linearly.

Since a PDB can consist of many files, depending on the user interface, one must know how to get to all the files in the
PDB in order to remotely program the whole user interface. Each file of a user interface has its own record entry in the
PDB as well as the raw data that pertains to it.

Parsing the PDB

This section will use a hex editor such as CodeWright in order to show the steps involved in parsing through a PDB file
for remote programming. The following image is a snapshot of an example PDB opened in CodeWright in hex format:

The total number of record entries (user interface pages) is stored as a 16-bit number in the header at location 0x4C.
In this example, there are 6 unique record entries. Immediately following the total number of record entries are the
record entry arrays, consisting of 8 bytes per array, for each of the 6 record entries. In the case of the example in Figure
above, the first record entry array equals "00,00,00,8D,00,00,00,00". The important part of the record entry array is
the starting offset of the raw data which is a 32-bit number which can be found in bytes 1 through 4 (0x0000008D).
As you can see from this example, data is stored Big Endian style, meaning the bytes go from most significant to least
significant.

The starting offset is from the start of the PDB file (0x00). You can calculate the size of the raw data by subtracting
the starting offset from the the next chunk's starting offset, if one is available. If not, then use the end of the file to
calculate the last entry's raw data size. To help clear this up, see the table below:

File# Starting Offset of
Current Record

Starting Offset of Next
Record

Length of
Raw Data

1 0x0000008D 0x00000306 0x0279

2 0x00000306 0x00000330 0x002A

3 0x00000330 0x00000354 0x0024

4 0x00000354 0x0000041F 0x00CB

5 0x0000041F 0x000008C6 0x04A7

6 0x000008C6 End of File (0x08F3) 0x002D

It is the raw data of the individual record entries which need to be transmitted via xmodem over to the Amulet
chip. Now that you know how to parse a Palm database file, you can implement the Xmodem Protocol in your
microprocessor firmware and have the flexibility of reprogramming any Amulet module via your controller.

XModem Protocol

Introduction

The Xmodem protocol was created years ago as a simple means of having two computers talk to each other. With its
half-duplex mode of operation, 128- byte packets, ACK/NACK responses and CRC data checking, the Xmodem protocol
has found its way into many applications. In fact most communication packages found on the PC today have a Xmodem
protocol available to the user.

NOTE: Amulet uses a slightly modified 128-byte or 1K Xmodem (with 16-bit CRC) protocol. For 1k-Xmodem, the SOH
byte is 0x02, and for 128-byte it is 0x01.

Theory of Operation

Xmodem is a half-duplex communication protocol. The receiver, after receiving a packet, will either acknowledge (ACK)
or not acknowledge (NAK) the packet. The CRC extension to the original protocol uses a more robust 16-bit CRC to
validate the data block and is used here. Xmodem can be considered to be receiver driven. That is, the receiver sends
an initial character “C” to the sender indicating that it is ready to receive data in CRC mode. The sender then sends a
133-byte packet, the receiver validates it and responds with an ACK or a NAK at which time the sender will either send
the next packet or re-send the last packet. This process is continued until an EOT is received at the receiver side and
is properly ACKed to the sender. After the initial handshake the receiver controls the flow of data through ACKing and
NAKing the sender.

Table 1. XmodemCRC Packet Format

Byte 1 Byte 2 Byte 3 Bytes 4-131 Bytes 132-133

Start of Header Packet Number (Packet Number) Packet Data 16-bit CRC

NOTE: Bytes 0-5 of each binary file are the flash header bytes. The Amulet uses these bytes to determine where to
store the file within the flash. You can send the files in any order, the Amulet won't mind.

Definitions

The following defines are used for protocol flow control.

Symbol Description Value

SOH Start of Header 0x01 for
128-byte
protocol

0x02 for 1K
protocol

EOT End of Transmission 0x04

ACK Acknowledge 0x06

NAK Not Acknowledge 0x15

EOTCRC End of Transmission CRC (Amulet
Chip will recalculate the CRC

based off of the data in the flash)

0x16

ETB End of Transmission Block
(Return to Amulet OS mode)

0x17

CAN Cancel (Force receiver to start sending C's) 0x18

C ASCII “C” 0x43

Byte 1 of the XmodemCRC packet can only have a value of SOH, EOT, CAN or ETB anything else is an error. Bytes 2 and 3
form a packet number with checksum, add the two bytes together and they should always equal 0xff. Please note that
the packet number starts out at 1 and rolls over to 0 if there are more than 255 packets to be received. Bytes 4 - 131
form the data packet and can be anything. Bytes 132 and 133 form the 16-bit CRC. The high byte of the CRC is located
in byte 132. The CRC is calculated only on the data packet bytes (4 - 131) .

Xmodem has a CRC, but there is an optional secondary CRC that checks the data that was actually written to the
flash. After sending the EOT byte (0x04) after the last packet in each file, you can send what we have dubbed the
EOTCRC (0x16) This will cause the Amulet color chip to calculate a new CRC based off of the data in the flash. A match is
indicated by an ACK and a non-match by a NACK. The FSN will begin transmission after the ACK or NACK. A NACK'd file
should be reprogrammed.

Synchronization

In the standard Xmodem Protocol, the receiver starts by sending an ASCII “C” (0x43) character to the sender indicating
it wishes to use the CRC method of block validating. In Amulet's color chip, we will instead output a character that
indicates the size of the serial dataflash connected to first chip select CS0 of the SPI bus. This character is referred to as
the Flash Size Notifier, or FSN. The flash size to character mapping is as follows:

a : 1Mbit
b : 2Mbit
c : 4Mbit
d : 8Mbit
e : 16Mbit
f : 32Mbit (standard starter kit size)
g : 64Mbit (GCC-2 size)
C: eMMC or QSPI (High Performance only)
Z : None Detected

After sending the initial FSN character, the receiver waits for either a 2 second time out or until a buffer full flag is set.
If the receiver is timed out then another FSN character or an ACK is sent to the sender and the 2 second time out starts
again. This process continues until the receiver receives a complete 133-byte packet.

Receiver Considerations

This protocol NAKs the following conditions: 1. Framing error on any byte 2. Overrun error on any byte 3. Duplicate
packet 4. CRC error 5. Receiver timed out (didn't receive packet within 1 second) On any NAK, the sender will re-
transmit the last packet. Items 1 and 2 should be considered serious hardware failures. Verify that sender and receiver
are using the same baud rate, start bits and stop bits. Item 3 is usually the sender getting an ACK garbled and re-
transmitting the packet. Item 4 is found in noisy environments. And the last issue should be self-correcting after the
receiver NAKs the sender.

Sender Receiver

 <--- FSN Character

 Times out after 2 seconds

 <--- FSN Character

SOH 0x01 0xFE Data CRC ---> Packet OK

 <--- ACK

SOH 0x02 0xFD Data CRC ---> (Line hit during transmission)

 <--- NACK

SOH 0x02 0xFD Data CRC ---> Packet OK

 <--- ACK

SOH 0x03 0xFC Data CRC ---> Packet OK

(ACK gets garbled) <--- ACK

 <--- ACK

SOH 0x04 0xFB Data CRC ---> (UART Framing Error on Any Byte)

 <--- NACK

SOH 0x04 0xFB Data CRC ---> PACKET OK

 <--- ACK

SOH 0x05 0xFA Data CRC ---> (UART Overrun Error on Any Byte)

 <--- NACK

SOH 0x05 0xFA Data CRC ---> Packet OK

 <--- ACK

EOT ---> Packet OK

 <--- ACK

ETB ---> Finished

Finished <--- ACK

Sample crc calculation code

int calcrc(char *ptr, int count)
{
 int crc;
 char i;

 crc = 0;
 while (--count >= 0)
 {
 crc = crc ^ (int) *ptr++ << 8;
 i = 8;
 do
 {
 if (crc & 0x8000)
 crc = crc << 1 ^ 0x1021;
 else
 crc = crc << 1;
 } while(--i);
 }
 return (crc);
}

Embedded GUI Video Tutorials

If you haven't already done so, please take the time to look at the Online Video Tutorials. The tutorials will provide you
with an overview of how to create, compile and simulate your GUI. To get to the tutorials, pull down the menu for Help
when you open a GEMstudio window and select "Online Video Tutorials". For additional examples, please go to your
GEMstudio directory and click on the .gemp files.
What will I learn in the tutorials?

• Creating and Compiling a GUI.
• Simulate the GUI
• Basics of the GEMscript scripting language

Click here for the videos.

GEMstudio Change Log

Go to the GEMstudio Help menu and select "View Change Log" to see all new features, enhancements, and bug fixes
organized by the GEMstudio version number when they were added.

http://www.amulettechnologies.com/support/video-tutorials

	Title
	Table of Contents
	Welcome
	Project Types
	GEMstudio IDE Features
	Create LCD Configuration
	Removing Touchpanel Calibration

	LCD/Board Chooser
	Board Profile Editor
	Href Editor
	Page Functions Editor
	External Code Editors
	Enable External Code Editor

	Amulet GEM Font Converter
	Colors
	Using Amulet Formatted Text
	Numbers
	Image Formats
	Programming the Amulet OS
	Localization
	Marking Strings for Translation
	Context
	Guidelines For Marking Strings
	Translating Dynamic Strings

	Extracting Strings to be Translated
	The Translator's Job
	Compile .PO to .MO
	Using .MO files
	Poedit

	Exporting Portable Projects
	Local Configurations
	Incremental Compile
	Project Properties
	LCD
	Bezel Image

	Communication
	InternalRAM
	Color Depth
	Transitions
	Language
	Logos
	Miscellaneous
	GEMscript
	USB MSD

	GEMstudio API
	Amulet Function Calls
	Function Call Conventions
	Control Widget Function Calls
	Multiple Function Calls
	Sequenced Function Calls
	Using Backslashes, Commas and Semi-colons within Strings stored in Function Calls

	View Widget Function Calls

	Page Functions
	Amulet Internal RAM
	Internal RAM nomenclature
	Using InternalRAM variables as method arguments
	Using InternalRAM byte variables as variable indices
	Using InternalRAM string variable for a button label
	Initializing Internal RAM variables at compile time
	Initializing single Internal RAM variables
	Initializing multiple Internal RAM variables
	Initializing special attributes in Internal RAM string variables
	Reloading the initialized InternalRAM variables on a per page basis

	Internal RAM specific methods
	InternalRAM Byte Method Descriptions
	InternalRAM Word Method Descriptions
	InternalRAM Color Method Descriptions
	InternalRAM String Method Descriptions
	Miscellaneous InternalRAM Method Descriptions

	Setting the number of available variables

	Amulet Widgets
	Object
	Image
	Animated Image
	Static Text

	Control Widgets
	CheckBox
	CustomButton
	CustomSlider
	FunctionButton
	ImageScroller
	List
	PWM (deprecated)
	RadioButton
	Scribble (deprecated)
	Slider
	Timer
	Touch Area

	View Widgets
	BarGraph
	Dynamic Image (deprecated)
	ImageBar
	ImageSequence
	Line Graph
	Line Plot
	Linear Gauge
	Numeric Field
	Rectangle
	String Field

	Intrinsic Values

	Backlight Control
	Inter-Widget Communication
	META Refresh Objects
	Nested Pages

	Amulet Communication Protocols
	Communication Format
	Communication Modifications
	CRC Protocol
	Amulet as Master
	Amulet as Slave
	CRC Commands
	Using Extended Addressing

	RPC Buffer
	Graphic Primitives Usage
	Graphic Primitives

	Error Responses
	CRC Calculation
	Jump to specific page
	Soft Reset
	Get Current Page Index
	Flow Diagram Example
	Summary of Amulet CRC protocol

	ASCII Protocol
	Amulet as Master
	Amulet as Slave
	ASCII Commands
	Using Extended Addressing

	Graphic Primitives Usage
	Graphic Primitives

	RPC buffer
	Software handshaking using a modified XON/XOFF protocol
	Jump to specific page
	Soft Reset
	Flow Diagram Example
	Summary of Amulet ASCII protocol

	UTF-8
	Dual Master Collisions
	Sending Master Messages Between Amulet Page Changes
	Font Style Escape
	Sending A Single Byte Without A Response
	Sending A Stream Of Bytes Without A Response
	Sending A String Of Bytes Without A Response
	Customizing the Amulet protocol command opcodes

	Serial Terminal
	Amulet Bitmap Format
	Standard Module
	High Performance Module

	Link Map
	Macro Preprocessor
	Utilization of SD Card
	Data Logging
	Software Programming

	Appendix A - UART Code examples
	Appendix B - All Commands
	Control Widget Href Functions
	Control Widget IWC Methods
	View Widget Href Functions
	Widget-specific Href Functions
	Line Graph Widget Href Functions
	StringField Widget Href Functions

	Appendix C - Inter-Widget Commands
	Animated Image Methods
	BarGraph Methods
	CheckBox Methods
	Custom Button Methods
	Custom Slider Methods
	Dynamic Image (deprecated)
	FunctionButton Methods
	Image Methods
	ImageBar Methods
	ImageScroller Methods
	ImageSequence Methods
	Line Graph Methods
	Line Plot Methods
	Linear Gauge Methods
	List Methods
	META Refresh Tag (deprecated)
	Numeric Field Methods
	Pulse Width Modulation (deprecated)
	Radio Button Methods
	Rectangle Methods
	Scribble (deprecated)
	Slider Methods
	Static Text Methods
	String Field Methods
	Timer Methods
	Touch Area Methods

	Restore Amulet OS
	GEMstudio Production Files
	Pass Thru Programming
	Palm Database Format
	XModem Protocol

	Video Tutorials
	Change Log

